8.已知 y=f ( x ) 是定義在 R 上的偶函數(shù),且當(dāng) x∈(-∞,0),f ( x )+xf'( x )<0成立( f'( x ) 是函數(shù) f ( x) 的導(dǎo)數(shù)),若 a=$\frac{1}{2}$f (log2$\sqrt{2}$ ),b=(ln 2 ) f (ln 2 ),c=2f (-2 ),則 a,b,c 的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

分析 利用當(dāng)x<0時(shí),f(x)+xf'(x)<0,化為(xf(x))'<0,令y=xf(x),得出函數(shù)y=xf(x)在定義域上是奇函數(shù),在 R 上是減函數(shù),即可得出結(jié)論.

解答 解:當(dāng)x<0時(shí),f(x)+xf'(x)<0,即(xf(x))'<0,
令y=xf(x),
則函數(shù)y=xf(x)在區(qū)間(-∞,0)上為減函數(shù),
又f(x)在定義域上是偶函數(shù),
∴函數(shù)y=xf(x)在定義域上是奇函數(shù),在 R 上是減函數(shù).
∵2>ln2>$\frac{1}{2}$,
∴a>b>c
故選A.

點(diǎn)評 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的對稱性、單調(diào)性、奇偶性的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}滿足:${a_1}=\frac{1}{2},{a_1}+{a_2}+…+{a_n}={n^2}{a_n}(n∈{N^*})$
(1)求a2,a3;
(2)猜想{an}通項(xiàng)公式并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在體積為V的球內(nèi)有一個(gè)多面體,該多面體的三視圖是如圖所示的三個(gè)斜邊都是$\sqrt{2}$的等腰直角三角形,則V的最小值是(  )
A.$4\sqrt{3π}$B.$\frac{{\sqrt{3}π}}{2}$C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.一個(gè)長方體被一個(gè)平面截去一部分后,所剩幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.36B.48C.64D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求下列直線的方程
(1)過直線l1:2x-3y-1=0和l2:x+y+2=0的交點(diǎn),且平行于直線2x-y+7=0的直線方程
(2)過點(diǎn)P(2,-1),且橫截距是縱截距的3倍的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.將三項(xiàng)式(x2+x+1)n展開,當(dāng)n=0,1,2,3,…時(shí),得到以下等式:
(x2+x+1)0=1
(x2+x+1)1=x2+x+1
(x2+x+1)2=x4+2x3+3x2+2x+1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1

觀察多項(xiàng)式系數(shù)之間的關(guān)系,可以仿照楊輝三角構(gòu)造如圖所示的廣義楊輝三角形,其構(gòu)造方法為:第0行為1,以下各行每個(gè)數(shù)是它頭上與左右兩肩上3數(shù)(不足3數(shù)的,缺少的數(shù)計(jì)為0)之和,第k行共有2k+1個(gè)數(shù).若在(1+ax)(x2+x+1)5的展開式中,x8項(xiàng)的系數(shù)為67,則實(shí)數(shù)a值為$\frac{26}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖所示的程序框圖,若輸入x,k,b,p的值分別 為1,-2,9,3,則輸出x的值為(  )
A.-29B.-5C.7D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖程序框圖,則輸出的S值為(  )
A.0B.-1C.$-\frac{1}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤$\frac{π}{2}$),滿足:最大值為2,其圖象相鄰兩個(gè)最低點(diǎn)之間距離為π,且函數(shù)f(x)的圖象關(guān)于點(diǎn)($\frac{π}{12}$,0)對稱.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若向量$\overrightarrow{a}$=(f(x-$\frac{π}{6}$),1),$\overrightarrow$=($\frac{1}{2}$,-2cosx),$x∈[-\frac{3π}{4},\frac{π}{2}]$,設(shè)函數(shù)$g(x)=\overrightarrow a•\overrightarrow b+\frac{1}{2}$,求函數(shù)g(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案