A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
分析 根據直線平行的等價條件結合充分條件和必要條件的定義進行判斷即可.
解答 解:若a=1,則兩條直線方程為x+2y-1=0與直線x+2y+4=0,則兩直線平行,即充分性成立,
當a=0時,兩條直線方程為2y-1=0與直線x+y+4=0,則兩直線不平行,
當a≠0時,若兩直線平行,則滿足$\frac{1}{a}=\frac{a+1}{2}$≠$\frac{4}{-1}$,
由$\frac{1}{a}=\frac{a+1}{2}$得a(a+1)=2,即a2+a-2=0,得a=1或a=-2,則必要性不成立,
即“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的充分不必要條件,
故選:A
點評 本題主要考查充分條件和必要條件的判斷,結合直線平行的等價條件是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,0) | B. | (-2,0) | C. | (0,2) | D. | (0,-2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x3 | B. | y=x | C. | y=x-3 | D. | y=x-2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2017+$\sqrt{5}$ | B. | 2016-$\sqrt{5}$ | C. | 6-$\sqrt{5}$ | D. | 6+$\sqrt{5}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com