已知平面直角坐標(biāo)系,以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,,曲線的參數(shù)方程為.點(diǎn)是曲線上兩點(diǎn),點(diǎn)的極坐標(biāo)分別為.
(1)寫出曲線的普通方程和極坐標(biāo)方程;
(2)求的值.
(1);(2)4.
解析試題分析:(1)利用消參,得到曲線的普通方程,再利用,,轉(zhuǎn)化為極坐標(biāo)方程.
(2)方法一:,可知,為直徑,
方法二:利用極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化關(guān)系,求出的直角坐標(biāo),利用兩點(diǎn)間距離公式,求出.此題屬于基礎(chǔ)題型.尤其是第二問的方法的旋轉(zhuǎn).
試題解析:.(1)參數(shù)方程普通方程 3分
普通方程 6分
方法1:可知,為直徑,
方法2直角坐標(biāo)兩點(diǎn)間距離 10分
考點(diǎn):參數(shù)方程與極坐標(biāo)方程
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長(zhǎng)度單位.
(1)寫出曲線的普通方程,并說(shuō)明它表示什么曲線;
(2)過(guò)點(diǎn)作傾斜角為的直線與曲線相交于兩點(diǎn),求線段的長(zhǎng)度和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
長(zhǎng)為3的線段兩端點(diǎn)A,B分別在x軸正半軸和y軸的正半軸上滑動(dòng),,點(diǎn)P的軌跡為曲線C.
(1)以直線AB的傾斜角為參數(shù),求曲線C的參數(shù)方程;
(2)求點(diǎn)P到點(diǎn)距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系取相同單位長(zhǎng)度.已知曲線過(guò)點(diǎn)的直線的參數(shù)方程為(t為參數(shù)). (1)求曲線C與直線 的普通方程;(2)設(shè)曲線C經(jīng)過(guò)伸縮變換得到曲線,若直線 與曲線相切,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求圓的直角坐標(biāo)方程;
(2)若是直線與圓面≤的公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù)),曲線C2的參數(shù)方程為(a>b>0,φ為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線l:θ=α與C1,C2各有一個(gè)交點(diǎn).當(dāng)α=0時(shí),這兩個(gè)交點(diǎn)間的距離為2,當(dāng)α=時(shí),這兩個(gè)交點(diǎn)重合.
(1)分別說(shuō)明C1,C2是什么曲線,并求出a與b的值.
(2)設(shè)當(dāng)α=時(shí),l與C1,C2的交點(diǎn)分別為A1,B1,當(dāng)α=-時(shí),l與C1,C2的交點(diǎn)為A2,B2,求四邊形A1A2B2B1的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在極坐標(biāo)系中,O為極點(diǎn),半徑為2的圓C的圓心的極坐標(biāo)為.
(1)求圓C的極坐標(biāo)方程;
(2)P是圓C上一動(dòng)點(diǎn),點(diǎn)Q滿足3,以極點(diǎn)O為原點(diǎn),以極軸為x軸正半軸建立直角坐標(biāo)系,求點(diǎn)Q的軌跡的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線C1的參數(shù)方程是 (φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=2.正方形ABCD的頂點(diǎn)都在C2上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為,
(1)求點(diǎn)A,B,C,D的直角坐標(biāo);
(2)設(shè)P為C1上任意一點(diǎn),求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建坐標(biāo)系,已知曲線,已知過(guò)點(diǎn)的直線的參數(shù)方程為 (為參數(shù)),直線與曲線分別交于兩點(diǎn).
(Ⅰ)寫出曲線和直線的普通方程;
(Ⅱ)若成等比數(shù)列,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com