如圖,在四棱錐P—ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC=AD=1,CD=.

(1)若點M是棱PC的中點,求證:PA∥平面BMQ;
(2)若二面角M—BQ—C為30°,設PM=tMC,試確定t的值.
(1)見解析  (2)t=3.
(1)證明 連接AC,交BQ于N,連接MN.
∵BC∥AD且BC=AD,
即BC綊AQ.
∴四邊形BCQA為平行四邊形,且N為AC中點,
又∵點M是棱PC的中點,
∴MN∥PA.
∵MN?平面BMQ,PA?平面BMQ,
∴PA∥平面BMQ.
(2)解 ∵PA=PD,Q為AD的中點,
∴PQ⊥AD.∵平面PAD⊥平面ABCD,
且平面PAD∩平面ABCD=AD,
∴PQ⊥平面ABCD.
如圖,以Q為原點建立空間直角坐標系.

則平面BQC的法向量為n=(0,0,1);
Q(0,0,0),P(0,0,),B(0,,0),C(-1,,0).
設M(x,y,z),則=(x,y,z-),
=(-1-x,-y,-z),
=t,

在平面MBQ中,=(0,,0),
,
∴平面MBQ的法向量為m=(,0,t).
∵二面角M—BQ—C為30°,
cos 30°=,∴t=3.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四棱錐中,⊥平面,,,分別為線段的中點.

(1)求證:∥平面;    
(2)求證:⊥平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,長方體中,,,點的中點。

(1)求證:直線∥平面
(2)求證:平面平面;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,AB=AD,∠BAD=90°,M,N,G分別是BD,BC,AB的中點,將等邊△BCD沿BD折疊到△BC′D的位置,使得AD⊥C′B.
(1)求證:平面GNM∥平面ADC′.
(2)求證:C′A⊥平面ABD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱柱ABCD—A1B1C1D1中,側棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.

(1)證明B1C1⊥CE;
(2)求二面角B1­CE­C1的正弦值;
(3)設點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

四棱錐底面是菱形,,分別是的中點.

(1)求證:平面⊥平面;
(2)上的動點,與平面所成的最大角為,求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,三棱柱中,平面,,,.以
為鄰邊作平行四邊形,連接

(1)求證:∥平面 ;
(2)求直線與平面所成角的正弦值;
(3)線段上是否存在點,使平面與平面垂直?若存在,求出的長;若
不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,上一點,面,四邊形為矩形 ,,
(1)已知,且∥面,求的值;
(2)求證:,并求點到面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是兩條不同的直線, 是兩個不同的平面,則下列命題正確的是(    )
A.若,則B.若,則
C.若,則D.若,則

查看答案和解析>>

同步練習冊答案