5.如圖所示,△A′B′C′是水平放置的△ABC的直觀圖,則在原△ABC的三邊及中線AD中,最長(zhǎng)的線段是( 。
A.ABB.ADC.BCD.AC

分析 還原△ABC,即可看出△ABC為直角三角形,故其斜邊AC最長(zhǎng).

解答 解:△A′B′C′是水平放置的△ABC的直觀圖中,AB⊥BC,AC為斜邊,最長(zhǎng)的線段是AC,
故選:D.

點(diǎn)評(píng) 本題主要考查平面圖形的直觀圖的應(yīng)用,要求熟練掌握斜二測(cè)畫法的邊長(zhǎng)關(guān)系,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.給出下列5個(gè)關(guān)系:①{0}∈{0,1,2};②∅?{0};③{0,1,2}⊆{1,2,0};④0∈∅;⑤1∈{x|x⊆{1,2}},其中正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若點(diǎn)A、B為圓(x-2)2+y2=25上的兩點(diǎn),點(diǎn)P(3,-1)為弦AB的中點(diǎn),則弦AB所在的直線方程為x-y-4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=sin(2ωx+$\frac{π}{3}$)(其中ω>0),且f(x)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)是$\frac{π}{6}$.
(1)求y=f(x)的最小正周期及對(duì)稱軸;
(2)若x∈$[{-\frac{π}{3},\frac{5π}{6}}]$,函數(shù)$g(x)={[f(x+\frac{π}{2})]^2}$-af(x)+1的最小值為0.求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)計(jì)流程圖計(jì)算S=1+2+3+…+100,并寫出相應(yīng)語句.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知圓C:(x+1)2+(y-2)2=2關(guān)于直線2ax+by+6=0對(duì)稱,則點(diǎn)(a,b)與圓心C的距離的最小值為3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知正三角形ABC的邊長(zhǎng)為2,D、E、F分別是BC、CA、AB的中點(diǎn).
(1)在三角形內(nèi)部隨機(jī)取一點(diǎn)P,求滿足|PB|≥1且|PC|≥1的概率;
(2)在A、B、C、D、E、F這6點(diǎn)中任選3點(diǎn),記這3點(diǎn)圍成圖形的面積為ξ,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖所示,A,B兩點(diǎn)5條連線并聯(lián),它們?cè)趩挝粫r(shí)間內(nèi)能通過的最大信息量依次為2,3,4,3,2.現(xiàn)記從中任取三條線且在單位時(shí)間內(nèi)都通過的最大信息總量為ξ,則P(ξ≥8)=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l的極坐標(biāo)方程為ρsin(θ-$\frac{π}{4}$)=2$\sqrt{2}$,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2+2sinθ}{\;}\end{array}\right.$(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.
(1)求直線l與圓C的交點(diǎn)的極坐標(biāo);
(2)若P為圓C上的動(dòng)點(diǎn),求P到直線l的距離d的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案