【題目】如圖,是平行四邊形,,為的中點,且有,現(xiàn)以為折痕,將折起,使得點到達(dá)點的位置,且
(1)證明:平面;
(2)若四棱錐的體積為,求四棱錐的側(cè)面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(x﹣φ),且 f(x)dx=0,則函數(shù)f(x)的圖象的一條對稱軸是( )
A.x=
B.x=
C.x=
D.x=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,在處的切線方程為.
(1)求, ;
(2)若,證明: .
【答案】(1), ;(2)見解析
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于 的方程組,解出即可;
(2)由(1)可知, ,
由,可得,令, 利用導(dǎo)數(shù)研究其單調(diào)性可得
,
從而證明.
試題解析:((1)由題意,所以,
又,所以,
若,則,與矛盾,故, .
(2)由(1)可知, ,
由,可得,
令,
,
令
當(dāng)時, , 單調(diào)遞減,且;
當(dāng)時, , 單調(diào)遞增;且,
所以在上當(dāng)單調(diào)遞減,在上單調(diào)遞增,且,
故,
故.
【點睛】本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導(dǎo)數(shù)證明不等式的方法,解題時要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
【題型】解答題
【結(jié)束】
22
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(, 為參數(shù)),以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點, 與原點構(gòu)成,且滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計劃在某水庫建一座至多安裝3臺發(fā)電機(jī)的水電站,過去50年的水文資料顯示,水庫年入流量X(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨(dú)立.
(1)求未來4年中,至多有1年的年入流量超過120的概率;
(2)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每年發(fā)電機(jī)最多可運(yùn)行臺數(shù)受年入流量X限制,并有如下關(guān)系:
年入流量X | 40<X<80 | 80≤X≤120 | X>120 |
發(fā)電機(jī)最多可運(yùn)行臺數(shù) | 1 | 2 | 3 |
若某臺發(fā)電機(jī)運(yùn)行,則該臺年利潤為5000萬元,若某臺發(fā)電機(jī)未運(yùn)行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)多少臺?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】不等式組 的解集記為D,有下列四個命題:
p1:(x,y)∈D,x+2y≥﹣2 p2:(x,y)∈D,x+2y≥2
p3:(x,y)∈D,x+2y≤3 p4:(x,y)∈D,x+2y≤﹣1
其中真命題是( )
A.p2 , p3
B.p1 , p4
C.p1 , p2
D.p1 , p3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點p(1,m)在拋物線上,F為焦點,且.
(1)求拋物線C的方程;
(2)過點T(4,0)的直線交拋物線C于A,B兩點,O為坐標(biāo)原點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若, 都是從0,1,2,3,4五個數(shù)中任取的一個數(shù),求上述函數(shù)有零點的概率;
(2)若, 都是從區(qū)間上任取的一個數(shù),求成立的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 滿足Sn=2nan+1﹣3n2﹣4n,n∈N* , 且S3=15.
(1)求a1 , a2 , a3的值;
(2)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】7個人排成一排,按下列要求各有多少種排法?
其中甲不站排頭,乙不站排尾;
其中甲、乙、丙3人兩兩不相鄰;
其中甲、乙中間有且只有1人;
其中甲、乙、丙按從左到右的順序排列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com