【題目】設(shè)數(shù)列{an}的前n項和為Sn , 滿足Sn=2nan+1﹣3n2﹣4n,n∈N* , 且S3=15.
(1)求a1 , a2 , a3的值;
(2)求數(shù)列{an}的通項公式.
【答案】
(1)
解:由Sn=2nan+1﹣3n2﹣4n,n∈N*,得:
S2=4a3﹣20 ①
又S3=S2+a3=15 ②
聯(lián)立①②解得:a3=7.
再在Sn=2nan+1﹣3n2﹣4n中取n=1,得:
a1=2a2﹣7 ③
又S3=a1+a2+7=15 ④
聯(lián)立③④得:a2=5,a1=3.
∴a1,a2,a3的值分別為3,5,7
(2)
解:∵a1=3=2×1+1,a2=5=2×2+1,a3=7=2×3+1.
由此猜測an=2n+1.
下面由數(shù)學(xué)歸納法證明:
①當n=1時,a1=3=2×1+1成立.
②假設(shè)n=k時結(jié)論成立,即ak=2k+1.
那么,當n=k+1時,
由Sn=2nan+1﹣3n2﹣4n,得 ,
,
兩式作差得: .
∴
= =2(k+1)+1.
綜上,當n=k+1時結(jié)論成立.
∴an=2n+1.
【解析】(1)在數(shù)列遞推式中取n=2得一關(guān)系式,再把S3變?yōu)镾2+a3得另一關(guān)系式,聯(lián)立可求a3 , 然后把遞推式中n取1,再結(jié)合S3=15聯(lián)立方程組求得a1 , a2;(2)由(1)中求得的a1 , a2 , a3的值猜測出數(shù)列的一個通項公式,然后利用數(shù)學(xué)歸納法證明.
【考點精析】關(guān)于本題考查的數(shù)列的通項公式,需要了解如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某零售店近5個月的銷售額和利潤額資料如下表:
商店名稱 | |||||
銷售額/千萬元 | 3 | 5 | 6 | 7 | 9 |
利潤額/百萬元 | 2 | 3 | 3 | 4 | 5 |
(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關(guān)關(guān)系;
(2)用最小二乘法計算利潤額關(guān)于銷售額的回歸直線方程;
(3)當銷售額為4千萬元時,利用(2)的結(jié)論估計該零售店的利潤額(百萬元).
[參考公式:,]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是平行四邊形,,為的中點,且有,現(xiàn)以為折痕,將折起,使得點到達點的位置,且
(1)證明:平面;
(2)若四棱錐的體積為,求四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項和.
若三角形的三邊長分別為,,,求此三角形的面積;
探究數(shù)列中是否存在相鄰的三項,同時滿足以下兩個條件:此三項可作為三角形三邊的長;此三項構(gòu)成的三角形最大角是最小角的2倍若存在,找出這樣的三項,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列三個命題中
①“k=1”是“函數(shù)y=cos2kx-sin2kx的最小正周期為π”的充要條件;
②“a=3”是“直線ax+2y+3a=0與直線3x+(a-1)y=a-7相互垂直”的充要條件;
③“雙曲線上任意點M到兩條漸近線距離的積為定值”的逆否命題
其中是真命題的為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,其中k<﹣2.
(1)求函數(shù)f(x)的定義域D(用區(qū)間表示);
(2)討論函數(shù)f(x)在D上的單調(diào)性;
(3)若k<﹣6,求D上滿足條件f(x)>f(1)的x的集合(用區(qū)間表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠家為了了解某新產(chǎn)品使用者的年齡情況,現(xiàn)隨機調(diào)査100 位使用者的年齡整理后畫出的頻率分布直方圖如圖所示.
(1)求100名使用者中各年齡組的人數(shù),并利用所給的頻率分布直方圖估計所有使用者的平均年齡;
(2)若已從年齡在的使用者中利用分層抽樣選取了6人,再從這6人中選出2人,求這2人在不同的年齡組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一位數(shù)學(xué)老師在黑板上寫了三個向量,,,其中,都是給定的整數(shù).老師問三位學(xué)生這三個向量的關(guān)系,甲回答:“與平行,且與垂直”,乙回答:“與平行”,丙回答:“與不垂直也不平行”,最后老師發(fā)現(xiàn)只有一位學(xué)生判斷正確,由此猜測,的值不可能為( )
A. , B. , C. , D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com