求函數(shù)f(x)=
sinx
tan
x
2
+
sin2x
tanx
的最小值.
考點(diǎn):三角函數(shù)的最值
專題:函數(shù)的性質(zhì)及應(yīng)用,三角函數(shù)的求值
分析:首先通過三角函數(shù)的恒等變換,把函數(shù)變形成二次函數(shù)的形式,利用余弦函數(shù)的值域求函數(shù)的最小值.
解答: 解:f(x)=
sinx
tan
x
2
+
sin2x
tanx
=
2sin
x
2
cos
x
2
tan
x
2
+
2sinxcosx
tanx
=2cos2
x
2
-1+2cos2x+1

=2cos2x+cosx+1=2(cosx+
1
4
)2+
7
8

當(dāng)cosx=-
1
4
時(shí),函數(shù)f(x)min=
7
8
點(diǎn)評:本題考查的知識(shí)要點(diǎn):三角函數(shù)的恒等變換,函數(shù)的最值得確定.屬于基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果sin(α-
π
6
)=
1
3
,求sin(2α+
π
6
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長為6cm的線段AB上任取一點(diǎn)C,現(xiàn)作一矩形,鄰邊長分別等于線段AC,BC的長,則該矩形面積小于8cm2,的概率是(  )
A、
1
3
B、
2
3
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓錐的底面半徑為2,軸截面為等腰直角三角形,則圓錐的全面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P是雙曲線
x2
64
-
y2
36
=1
上一點(diǎn),F(xiàn)1、F2是雙曲線的兩個(gè)焦點(diǎn),且|PF1|=17,則|PF2|的值為(  )
A、33B、33或1
C、1D、25或9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
3
,且它的一個(gè)焦點(diǎn)與拋物線y2=24x的焦點(diǎn)重合,則此雙曲線的方程為( 。
A、
x2
12
-
y2
24
=1
B、
x2
48
-
y2
96
=1
C、
x2
3
-
2y2
3
=1
D、
x2
3
-
y2
6
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(0<3a<b),且f(x)≥0對任意實(shí)數(shù)x恒成立.
(I)當(dāng)b=4
a
時(shí),求c的最小值;
(Ⅱ)當(dāng)
f(-2)
f(2)-f(0)
取最小值時(shí),對任意的x1,x2∈[-3a,-a]都有|f(x1)-f(x2)|≤4a,
求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
,
b
滿足:|
a
|=3
,|
b
|=2
,|
a
+
b
|=4
,則|
a
-
b
|
=( 。
A、
3
B、
5
C、3
D、
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)矩陣A=
1
3
,
0
-1
,B=(
1
0
  
-2
1
)(t為參數(shù)),則(AB)-1=
 

查看答案和解析>>

同步練習(xí)冊答案