【題目】在銳角三角形ABC中,a,b,c分別為角A,B,C所對(duì)的邊,且
(1)求角C的大;
(2)若 ,且三角形ABC的面積為,求的值.
【答案】(1);(2) 5.
【解析】試題分析:(1)利用正弦定理把已知條件轉(zhuǎn)化成角的正弦,整理可求得sinC,進(jìn)而求得C.
(2)利用三角形面積求得ab的值,利用余弦定理求得a2+b2的值,最后求得a+b的值.
試題解析:
(1)由a=2csinA及正弦定理得, sinA=2sinCsinA.
∵sinA≠0,∴sinC=. ∵△ABC是銳角三角形,∴C=.
(2)∵C=,△ABC面積為, ∴absin=,即ab=6.①
∵c=,∴由余弦定理得a2+b2-2abcos=7,即a2+b2-ab=7.②
由②變形得(a+b)2=3ab+7.③ ③得(a+b)2=25,故a+b=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1,圓心在上.
(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線的方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國(guó)家實(shí)行二孩生育政策后,為研究家庭經(jīng)濟(jì)狀況對(duì)生二胎的影響,某機(jī)構(gòu)在本地區(qū)符合二孩生育政策的家庭中,隨機(jī)抽樣進(jìn)行了調(diào)查,得到如下的列聯(lián)表:
經(jīng)濟(jì)狀況好 | 經(jīng)濟(jì)狀況一般 | 合計(jì) | |
愿意生二胎 | 50 | ||
不愿意生二胎 | 20 | 110 | |
合計(jì) | 210 |
(1)請(qǐng)完成上面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為家庭經(jīng)濟(jì)狀況與生育二胎有關(guān)?
(2)若采用分層抽樣的方法從愿意生二胎的家庭中隨機(jī)抽取4個(gè)家庭,則經(jīng)濟(jì)狀況好和經(jīng)濟(jì)狀況一般的家庭分別應(yīng)抽取多少個(gè)?
(3)在(2)的條件下,從中隨機(jī)抽取2個(gè)家庭,求2個(gè)家庭都是經(jīng)濟(jì)狀況好的概率.
附:
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | ||
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)求證: ;
(3)求證:當(dāng)時(shí), , 恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:+=1(a>b>0),其左右焦點(diǎn)為F1,F2,過F2的直線l交橢圓E于A,B兩點(diǎn),△AB F1的周長(zhǎng)為8,且△AF1F2的面積最大時(shí),△AF1F2為正三角形。
(1)求橢圓E的方程;
(2)若MN是橢圓E經(jīng)過 原點(diǎn)的弦,MN||AB,求證: 為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓上的點(diǎn)A(2,3)關(guān)于直線x+2y=0的對(duì)稱點(diǎn)仍在圓上,且直線x-y+1=0被圓截得的弦長(zhǎng)為2,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集成電路E由3個(gè)不同的電子元件組成,現(xiàn)由于元件老化,3個(gè)電子元件能正常工作的概率分別降為,,,且每個(gè)電子元件能否正常工作相互獨(dú)立。若3個(gè)電子元件中至少有2個(gè)正常工作,則E能正常工作,否則就需要維修,且維修集成電路E所需要費(fèi)用為100元。
(Ⅰ)求集成電路E需要維修的概率;
(Ⅱ)若某電子設(shè)備共由2個(gè)集成電路E組成,設(shè)X為該電子設(shè)備需要維修集成電路所需費(fèi)用。求X的分布列和均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線經(jīng)過點(diǎn),且圓的圓心到的距離為.
(1)求直線被該圓所截得的弦長(zhǎng);
(2)求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com