【題目】如圖,在平面直角坐標系中,點,直線,設圓的半徑為1,圓心在上.
(1)若圓心也在直線上,過點作圓的切線,求切線的方程;
(2)若圓上存在點,使,求圓心的橫坐標的取值范圍.
【答案】(1)或者;(2).
【解析】
試題分析:(1)聯(lián)立兩直線方程求得圓心為,圓的半徑為,故圓的方程為.由于斜率存在,故設切線方程為,利用圓心到直線的距離等于半徑,求得或者;(2)依題意設設圓心為,,利用代入點的坐標化簡得.由于兩圓相交,根據圓與圓的位置關系列不等式,可求得的取值范圍為:
試題解析:
(1)由得圓心為,∵圓的半徑為1,
∴圓的方程為:,
顯然切線的斜率一定存在,設所求圓的切線方程為,即,
∴,∴,∴,∴或者,
∴所求圓的切線方程為:或者即或者.
(2)解:∵圓的圓心在在直線上,所以,設圓心為,
則圓的方程為:,
又∵,∴設為,則整理得:設為圓,
∴點應該既在圓上又在圓上,即圓和圓有交點,
∴,
由得,
由得,
終上所述,的取值范圍為:.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線:與直線()交于,兩點.
(1)當時,分別求在點和處的切線方程;
(2)軸上是否存在點,使得當變動時,總有?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】A已知直線的參數(shù)方程為(為參數(shù)),在直角坐標系中,以為極點, 軸正半軸為極軸建立極坐標系,圓的方程為
(1)求圓的圓心的極坐標;
(2)判斷直線與圓的位置關系.
已知不等式的解集為
(1)求實數(shù)的值;
(2)若不等式對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下四個命題:
①對立事件一定是互斥事件;
②函數(shù)的最小值為2;
③八位二進制數(shù)能表示的最大十進制數(shù)為256;
④在中,若, , ,則該三角形有兩解.
其中正確命題的個數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)定義域為,且對任意實數(shù),有,則稱為“形函數(shù)”,若函數(shù)定義域為,函數(shù)對任意恒成立,且對任意實數(shù),有,則稱為“對數(shù)形函數(shù)” .
(1)試判斷函數(shù)是否為“形函數(shù)”,并說明理由;
(2)若是“對數(shù)形函數(shù)”,求實數(shù)的取值范圍;
(3)若是“形函數(shù)”,且滿足對任意,有,問是否為“對數(shù)形函數(shù)”?證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: 的離心率為,短軸的一個端點到右焦點的距離為.
(1)求橢圓C的方程;
(2)設直線l與橢圓C交于A、B兩點,坐標原點O到直線l的距離為,求△AOB面積的最大值,并求此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下表提供了某廠生產某產品過程中記錄的產量(噸)與相應的生產能耗(噸標準煤)的幾組對照數(shù)據:
2 | 4 | 6 | 8 | 10 | |
4 | 5 | 7 | 9 | 10 |
(1)請根據上表提供的數(shù)據,用最小二乘法求出關于的線性回歸方程;
(2)根據(1)中求出的線性回歸方程,預測生產20噸該產品的生產能耗是多少噸標準煤?
附:回歸直線的斜率和截距的最小二乘估計分別為: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓過點和點,且圓心在直線上.
(1)求圓的方程;
(2)過點作圓的切線,求切線方程.
(3)設直線,且直線被圓所截得的弦為,滿足,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com