分析 (1)由題意和正弦定理,以及和差角的三角函數(shù)公式可得cosB=$\frac{\sqrt{2}}{2}$,B=45°;
(2)由數(shù)量積和向量的垂直關系可得cosA=$\frac{4}{5}$,進而可得tanA和tanB,代入tanC=-tan(A+B)=-$\frac{tanA+tanB}{1-tanAtanB}$,計算可得.
解答 解:(1)∵鈍角△ABC中($\sqrt{2}$a-c)•cosB=bcosC,
∴由正弦定理可得($\sqrt{2}$sinA-sinC)•cosB=sinBcosC,
整理可得$\sqrt{2}$sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA,
同除以sinA可得cosB=$\frac{\sqrt{2}}{2}$,B=45°;
(2)∵向量$\overrightarrow{m}$=(cos2A+1,cosA),$\overrightarrow{n}$=(1,-$\frac{8}{5}$),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,
∴$\overrightarrow{m}•\overrightarrow{n}$=cos2A+1-$\frac{8}{5}$cosA=2cos2A-$\frac{8}{5}$cosA=0,
∵cosA≠0,故cosA=$\frac{4}{5}$,sinA=$\frac{3}{5}$,
∴tanA=$\frac{3}{4}$,tanB=1,
∴tanC=-tan(A+B)=-$\frac{tanA+tanB}{1-tanAtanB}$=-7
點評 本題考查解三角形,涉及正弦定理和向量的知識,屬中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-2,5) | B. | (-2,-5) | C. | (2,-5) | D. | (2,5) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 等邊三角形 | B. | 等腰直角三角形 | C. | 等腰三角形 | D. | 直角三角形 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com