已知函數(shù)f(x)=x2-4ax+2a+6,x∈R.
(1)若函數(shù)的值域?yàn)閇0,+∞),求a的值;
(2)若函數(shù)的值域?yàn)榉秦?fù)數(shù)集,求函數(shù)f(a)=2-a|a+3|的值域.

(1)a=-1或a=
(2)[-,4]

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)),.
(1)若在定義域上有極值,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若對(duì),總,使得,求實(shí)數(shù)的取值范圍;(其中為自然對(duì)數(shù)的底數(shù))
(3)對(duì),且,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知上的奇函數(shù),且當(dāng)時(shí),.
(1)求的表達(dá)式;
(2)畫(huà)出的圖象,并指出的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2f/f/l7nax2.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù),
(1)求的值;
( 2) 判斷并證明函數(shù)的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿(mǎn)足f()=f(x1)-f(x2),且當(dāng)x>1時(shí),f(x)<0.
(1)求f(1)的值;
(2)判斷f(x)的單調(diào)性;
(3)若f(3)=-1,解不等式f(|x|)<-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e1/c/leg7h1.png" style="vertical-align:middle;" />的函數(shù)同時(shí)滿(mǎn)足以下三個(gè)條件:
(1) 對(duì)任意的,總有;(2);(3) 若,且,則有成立,則稱(chēng)為“友誼函數(shù)”,請(qǐng)解答下列各題:
(1)若已知為“友誼函數(shù)”,求的值;
(2)函數(shù)在區(qū)間上是否為“友誼函數(shù)”?并給出理由.
(3)已知為“友誼函數(shù)”,假定存在,使得, 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的左焦點(diǎn)為,左、右頂點(diǎn)分別為,過(guò)點(diǎn)且傾斜角為的直線(xiàn)交橢圓于兩點(diǎn),橢圓的離心率為,
(1)求橢圓的方程;
(2)若是橢圓上不同兩點(diǎn),軸,圓過(guò)點(diǎn),且橢圓上任意一點(diǎn)都不在圓內(nèi),則稱(chēng)圓為該橢圓的內(nèi)切圓.問(wèn)橢圓是否存在過(guò)點(diǎn)的內(nèi)切圓?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知f(x)是偶函數(shù),且f(x)在[0,+∞)上是增函數(shù),如果f(ax+1)≤f(x-2)在x∈[,1]上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案