11.直線l與拋物線y2=x交于A(x1,y1),B(x2,y2)兩點(diǎn),若y1y2=-4,則直線l過(guò)定點(diǎn)M,則點(diǎn)M的坐標(biāo)為(1,0).

分析 設(shè)AB:x=my+b,代入拋物線方程,運(yùn)用韋達(dá)定理,結(jié)合條件,可得b=1,即可得到定點(diǎn)(1,0).

解答 解:設(shè)AB:x=my+b,
代入拋物線方程,可得y2-4my-4b=0,
y1y2=-4b,又y1y2=-4,
即有b=1,
即有x=my+1,
則直線AB恒過(guò)定點(diǎn)(1,0).
故答案為:(1,0).

點(diǎn)評(píng) 本題考查拋物線的方程的運(yùn)用,考查直線方程和拋物線方程聯(lián)立,運(yùn)用韋達(dá)定理,以及直線恒過(guò)定點(diǎn)的求法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若x0是函數(shù)f(x)=($\frac{1}{2}$)x-x的零點(diǎn),且x1<x0,則f(x1)與0的大小關(guān)系是f(x1)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.橢圓25x2+16y2=1的焦點(diǎn)坐標(biāo)是( 。
A.(±3,0)B.(±$\frac{1}{3}$,0)C.(±$\frac{3}{20}$,0)D.(0,±$\frac{3}{20}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.“T≠70,J≠90”是“T+J≠160”的既不充分也不必要條件.(填充分不必要、必要不充分,充要、既不充分又不必要之一)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,在四形邊ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.將△ADB沿BD折起,使CD⊥平面ABD,構(gòu)成三棱錐A-BCD.則在三棱錐A-BCD中,下列結(jié)論正確的是( 。
A.AD⊥平面BCDB.AB⊥平面BCDC.平面BCD⊥平面ABCD.平面ADC⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如果函數(shù)y=y(x)由方程${∫}_{0}^{y}$etdt-${∫}_{0}^{x}$costdt=0所確定,則$\frac{dy}{dx}$=$\frac{cosx}{1+sinx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=x2+$\frac{2}{bx+1}$+a是偶函數(shù).
(1)若在定義域上f(x)≥ax恒成立,求實(shí)數(shù)a的取值范圍;
(2)已知函數(shù)g(x)=f(x)+2mx+2m-a-1,若方程g(x)=0在(-1,2)上有且只有一正實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.將下列指數(shù)形式化成對(duì)數(shù)形式,對(duì)數(shù)形式化成指數(shù)形式.
①54=625
②($\frac{1}{3}$)m=5.73
③ln10=2.303
④lg0.01=-2
⑤log216=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)常數(shù)a>1,則f(x)=-x2-2ax+1在區(qū)間[-1,1]上的最大值為2a.

查看答案和解析>>

同步練習(xí)冊(cè)答案