將函數(shù)f(x)=sin(2x+θ)的圖象向右平移φ(φ>0)個單位長度后得到函數(shù)g(x)的圖象,若f(x),g(x)的圖象都經(jīng)過點P,則φ的值可以是(  )

A. B. C. D.

 

B

【解析】∵P在f(x)的圖象上,

∴f(0)=sin θ=.

∵θ∈,∴θ=

∴f(x)=sin,

∴g(x)=sin .

∵g(0)=,

∴sin.

驗證,φ=時,

sin=sin=sin成立.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 立體幾何(解析版) 題型:解答題

在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1.

(1)請在線段CE上找到點F的位置,使得恰有直線BF∥平面ACD,并證明這一結(jié)論;

(2)求多面體ABCDE的體積.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:填空題

(2013·孝感模擬)現(xiàn)有一根n節(jié)的竹竿,自上而下每節(jié)的長度依次構(gòu)成等差數(shù)列,最上面一節(jié)長為10 cm,最下面的三節(jié)長度之和為114 cm,第6節(jié)的長度是首節(jié)與末節(jié)長度的等比中項,則n=________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 三角函數(shù)、解三角形與平面向量(解析版) 題型:解答題

已知向量a=(cos ,sin ),b=(-sin ,-cos ),其中x∈[,π].

(1)若|a+b|=,求x的值;

(2)函數(shù)f(x)=a·b+|a+b|2,若c>f(x)恒成立,求實數(shù)c的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 三角函數(shù)、解三角形與平面向量(解析版) 題型:填空題

設f(x)=sin 3x+cos 3x,若對任意實數(shù)x都有|f(x)|≤a,則實數(shù)a的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 三角函數(shù)、解三角形與平面向量(解析版) 題型:選擇題

已知全集U=R,集合P={x|x2≤1},那么∁UP=(  )

A.(-∞,-1) B.(1,+∞)

C.(-1,1) D.(-∞,-1)∪(1,+∞)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年吉林省延邊州高考復習質(zhì)量檢測理科數(shù)學試卷(解析版) 題型:解答題

已知數(shù)列的前項和為,.

(1)求數(shù)列的通項公式;

(2)設log2an+1 ,求數(shù)列的前項和

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年吉林省延邊州高考復習質(zhì)量檢測文科數(shù)學試卷(解析版) 題型:解答題

已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中軸的正半軸重合,且兩坐標系有相同的長度單位,圓C的參數(shù)方程為為參數(shù)),點Q的極坐標為。

(1)化圓C的參數(shù)方程為極坐標方程;

(2)直線過點Q且與圓C交于M,N兩點,求當弦MN的長度為最小時,直線 的直角坐標方程。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014-2015學年浙江省嘉興市高二暑假作業(yè)檢測數(shù)學試卷(解析版) 題型:選擇題

已知,則的大小關(guān)系是

A. B.

C. D.無法確定

 

查看答案和解析>>

同步練習冊答案