11.“α是第二象限角“是“sinαcosα<0”的( 。
A.充分不必要條件B.不要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 根據(jù)充分條件和必要條件的定義結(jié)合三角函數(shù)的符號(hào)進(jìn)行判斷即可.

解答 解:若α是第二象限角,則sinα>0,cosα<0,則sinαcosα<0成立,
若α是第四象限角,則sinα<0,cosα>0滿(mǎn)足sinαcosα<0成立,但α是第二象限角不成立,
即“α是第二象限角“是“sinαcosα<0”的充分不必要條件,
故選:A

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,根據(jù)角的象限和三角函數(shù)的符號(hào)關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)f(x)=$\frac{mx}{1+|x|}$,集合N={y|y=f(x),x∈[a,b]},若使得N=[a,b]的實(shí)數(shù)對(duì)(a,b)(a<b)恰好有3個(gè),則實(shí)數(shù)m的取值范圍是m>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某廠(chǎng)用鮮牛奶在某臺(tái)設(shè)備上生產(chǎn)A,B兩種奶制品.生產(chǎn)1噸A產(chǎn)品需鮮牛奶2噸,使用設(shè)備1小時(shí),獲利1000元;生產(chǎn)1噸B產(chǎn)品需鮮牛奶1.5噸,使用設(shè)備1.5小時(shí),獲利1200元.要求每天B產(chǎn)品的產(chǎn)量不超過(guò)A產(chǎn)品產(chǎn)量的2倍,設(shè)備每天生產(chǎn)A,B兩種產(chǎn)品時(shí)間之和不超過(guò)12小時(shí). 假定每天至多可獲取鮮牛奶15噸,問(wèn)該廠(chǎng)每天生產(chǎn)A,B兩種奶制品各多少?lài)崟r(shí),該廠(chǎng)獲利最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a,b,c,b2+c2+bc-a2=0,則$\frac{asinBsin(B+C)}{bsinA}$的值為( 。
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知二次函數(shù)ax2+bx+c開(kāi)口向下,并且經(jīng)過(guò)A(0,1)和M(2,-3)兩點(diǎn).
(1)若函數(shù)f(x)的圖象關(guān)于直線(xiàn)x=-1對(duì)稱(chēng),求函數(shù)的解析式;
(2)若函數(shù)f(x)在(-2,+∞)單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知集合M滿(mǎn)足{a,b}⊆M?{a,b,c,d,e},則滿(mǎn)足條件的集合M有7個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)f(x)是定義在R上的偶函數(shù),且f(2-x)=f(2+x),當(dāng)x∈[-2,0]時(shí),f(x)=($\frac{\sqrt{2}}{2}$)x-1,記g(x)=f(x)-loga(x+2)(其中a>0,a≠1),試討論函數(shù)g(x)在區(qū)間(-2,6]上零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知二次函數(shù)y=f(x),當(dāng)x=2時(shí)有最大值16,它與x軸相交所得的線(xiàn)段長(zhǎng)為8,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)P=log35,Q=log52,R=log2(log32),則它們由小到大的順序?yàn)镽、Q、P.

查看答案和解析>>

同步練習(xí)冊(cè)答案