17.某校要建一個面積為450m2的長方形游泳池,并且在四周要修建出寬為2m和4m的小路(如圖所示).問游泳池的長和寬分別為多少米時,占地面積最?并求出占地面積的最小值.

分析 設(shè)游泳池的長為x(m),占地面積為y m2,則游泳池的寬為$\frac{450}{x}$ m,表示面積.利用基本不等式求解即可.

解答 解:設(shè)游泳池的長為x(m),占地面積為y  m2,則游泳池的寬為$\frac{450}{x}$   m.
由題意,得$y=(x+8)(\frac{450}{x}+4)=482+4(\frac{900}{x}+x)≥482+240=722$…(8分)
當(dāng)且僅當(dāng)$\frac{900}{x}=x$,即x=30時取等號.
答:游泳池的長為30m,寬為15m時,占地面積最小為722m2.…..(12分)

點評 本題考查函數(shù)的模型的選擇與應(yīng)用,基本不等式的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.關(guān)于x的不等式(ax-1)(x+2a-1)>0的解集中恰含有3個整數(shù),則實數(shù)a的取值集合是$\left\{{-\frac{1}{2},-1}\right\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.時鐘的時針走過了30分鐘,則分針轉(zhuǎn)過的角為-180°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若f(x)=ex+ae-x為奇函數(shù),則滿足不等式$f({x-1})<\frac{{{e^2}-1}}{e}$的x的取值范圍為{x|x<2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在三棱錐P-ABC中,PC⊥平面ABC,PC=4,AC=BC=3,∠ACB=90°.點D在線段AB上,AD=2DB.
(1)求異面直線BC與PD所成角的余弦值;
(2)求直線BC與平面PAB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在等比數(shù)列{an}中,若a5+a6+a7+a8=15,a6a7=-5,$\frac{1}{a_5}+\frac{1}{a_6}+\frac{1}{a_7}+\frac{1}{a_8}$=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合U={0,1,2,3,4,5},M={1,4,5},N={0,3,5},則M∩(∁UN)=(  )
A.{1}B.{1,4}C.{1,4,5}D.{1,2,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}y≤x\\ x+y≥2\\ y≥-1\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y( 。
A.有最小值-3,最大值5B.有最小值3,無最大值
C.有最大值5,無最小值D.既無最小值,也無最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知點A(1,-1),B(3,2),C(5,0),求點D的坐標(biāo),使直線CD⊥AB,且BC∥AD.

查看答案和解析>>

同步練習(xí)冊答案