分析 以C為原點(diǎn)建立空間直角坐標(biāo)系C-xyz,則C(0,0,0),A(3,0,0),B(0,3,0),P(0,0,4),D(1,2,0).利用向量法求解
解答 證明:如圖,以C為原點(diǎn)建立空間直角坐標(biāo)系C-xyz,則C(0,0,0),A(3,0,0),B(0,3,0),P(0,0,4),D(1,2,0).
(1)$\overrightarrow{BC}=(0,\;-3,\;0)$,$\overrightarrow{PD}=(1,\;2,\;-4)$.
設(shè)BC與PD所成的角為α,則$cosα=\frac{{|{\overrightarrow{BC}•\overrightarrow{PD}}|}}{{|{\overrightarrow{BC}}||{\overrightarrow{PD}}|}}=\frac{6}{{3\sqrt{21}}}=\frac{{2\sqrt{21}}}{21}$,
∴異面直線BC與PD所成角的余弦值為$\frac{{2\sqrt{21}}}{21}$.…(5分)
(2)可得$\overrightarrow{PA}=(3,\;0,\;-4)$,$\overrightarrow{PB}=(0,\;3,\;-4)$.
設(shè)平面PAB的一個(gè)法向量為$\overrightarrow{n}$=(x,y,z),
則由$\overrightarrow{n}•\overrightarrow{PA}=0,\overrightarrow{n}•\overrightarrow{PB}=0$,得$\left\{\begin{array}{l}3x-4z=0\\ 3y-4z=0\end{array}\right.$.可取$\overrightarrow{n}$=(4,4,3),
設(shè)直線BC與平面PAB所成角為θ,
則$sinθ=|{\frac{{n•\overrightarrow{BC}}}{{|n|•|\overrightarrow{BC}|}}}|=|{\frac{-12}{{\sqrt{{4^2}+{4^2}+{3^2}}•3}}}|=\frac{{4\sqrt{41}}}{41}$,
∴直線BC與平面PAB所成角的余弦值為$cosθ=\sqrt{1-{{sin}^2}θ}=\frac{{5\sqrt{41}}}{41}$. …(10分)
點(diǎn)評(píng) 本題考查了向量法求空間異面直線的夾角、直線與平面所成角,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{13}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com