12.如圖,在三棱錐P-ABC中,PC⊥平面ABC,PC=4,AC=BC=3,∠ACB=90°.點(diǎn)D在線段AB上,AD=2DB.
(1)求異面直線BC與PD所成角的余弦值;
(2)求直線BC與平面PAB所成角的余弦值.

分析 以C為原點(diǎn)建立空間直角坐標(biāo)系C-xyz,則C(0,0,0),A(3,0,0),B(0,3,0),P(0,0,4),D(1,2,0).利用向量法求解

解答 證明:如圖,以C為原點(diǎn)建立空間直角坐標(biāo)系C-xyz,則C(0,0,0),A(3,0,0),B(0,3,0),P(0,0,4),D(1,2,0).
(1)$\overrightarrow{BC}=(0,\;-3,\;0)$,$\overrightarrow{PD}=(1,\;2,\;-4)$.
設(shè)BC與PD所成的角為α,則$cosα=\frac{{|{\overrightarrow{BC}•\overrightarrow{PD}}|}}{{|{\overrightarrow{BC}}||{\overrightarrow{PD}}|}}=\frac{6}{{3\sqrt{21}}}=\frac{{2\sqrt{21}}}{21}$,
∴異面直線BC與PD所成角的余弦值為$\frac{{2\sqrt{21}}}{21}$.…(5分)
(2)可得$\overrightarrow{PA}=(3,\;0,\;-4)$,$\overrightarrow{PB}=(0,\;3,\;-4)$.
設(shè)平面PAB的一個(gè)法向量為$\overrightarrow{n}$=(x,y,z),
則由$\overrightarrow{n}•\overrightarrow{PA}=0,\overrightarrow{n}•\overrightarrow{PB}=0$,得$\left\{\begin{array}{l}3x-4z=0\\ 3y-4z=0\end{array}\right.$.可取$\overrightarrow{n}$=(4,4,3),
設(shè)直線BC與平面PAB所成角為θ,
則$sinθ=|{\frac{{n•\overrightarrow{BC}}}{{|n|•|\overrightarrow{BC}|}}}|=|{\frac{-12}{{\sqrt{{4^2}+{4^2}+{3^2}}•3}}}|=\frac{{4\sqrt{41}}}{41}$,
∴直線BC與平面PAB所成角的余弦值為$cosθ=\sqrt{1-{{sin}^2}θ}=\frac{{5\sqrt{41}}}{41}$. …(10分)

點(diǎn)評(píng) 本題考查了向量法求空間異面直線的夾角、直線與平面所成角,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖1,已知梯形ABCD中,BC∥AD,BC=BE=1,AD=4,E為AD的中點(diǎn),BE⊥AD.將△ABE沿BE折起到△PBE的位置,使∠PED=120°,如圖2.M是棱PB上的一點(diǎn)(M不與P,B重合),平面DEM交PC于N.

(Ⅰ)求證:DE∥MN;
(Ⅱ)求平面PBE與平面PCD所成銳二面角的余弦值;
(Ⅲ)是否存在點(diǎn)M,使得平面MNDE⊥平面PCD?若存在,求出$\frac{PM}{PB}$的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若sinB=2sinA,c>$\sqrt{3}$a.
(1)求B的取值范圍;
(2)當(dāng)C=$\frac{2π}{3}$,AB邊上的中線長(zhǎng)為l時(shí),求S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在平行四邊形OABC中,O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)C(1,3)作CD⊥AB于點(diǎn)D,
(1)求CD所在直線的方程;
(2)當(dāng)D(4,2)時(shí),求△OCD外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=2x+1,數(shù)列{an}滿足a1=1,${a_{n+1}}=f({a_n})-1(n∈{N^*})$,數(shù)列{bn}為等差數(shù)列,首項(xiàng)b1=1,公差為2.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)令${c_n}={a_n}+{b_n}(n∈{N^*})$,求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某校要建一個(gè)面積為450m2的長(zhǎng)方形游泳池,并且在四周要修建出寬為2m和4m的小路(如圖所示).問(wèn)游泳池的長(zhǎng)和寬分別為多少米時(shí),占地面積最?并求出占地面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,等差數(shù)列{bn}的前n項(xiàng)和為Tn,若此時(shí)滿足$\frac{S_n}{T_n}=\frac{n-3}{n+3}$,則$\frac{a_2}{{{b_{10}}+{b_{20}}}}+\frac{{{a_{28}}}}{{{b_{12}}+{b_{18}}}}$=(  )
A.1B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{13}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=2sinωx(ω>0)在y軸右側(cè)圖象上的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的距離是2$\sqrt{13}$,則ω是$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)y=2x+3在區(qū)間[1,5]上的最大值是( 。
A.5B.10C.13D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案