6.若方程$\sqrt{1-{x^2}}=a(x-2)$有兩個不相等實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是$(-\frac{{\sqrt{3}}}{3},0]$.

分析 畫出函數(shù)y=$\sqrt{1-{x}^{2}}$,與y=a(x-2)的圖象,利用圓心到直線的距離小于半徑,推出結(jié)果即可.

解答 解:畫出函數(shù)y=$\sqrt{1-{x}^{2}}$,與y=a(x-2)的圖象,
如圖:方程$\sqrt{1-{x^2}}=a(x-2)$有兩個不相等實(shí)數(shù)根,
可得:$\frac{|-2a|}{\sqrt{1+{a}^{2}}}$≤1,解得a∈$(-\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3})$,
結(jié)合圖象可得:a∈$(-\frac{{\sqrt{3}}}{3},0]$;
故答案為:$(-\frac{{\sqrt{3}}}{3},0]$.

點(diǎn)評 本題考查直線與圓的位置關(guān)系的應(yīng)用,函數(shù)的圖象的交點(diǎn)個數(shù)的應(yīng)用,考查數(shù)形結(jié)合以及函數(shù)零點(diǎn)個數(shù)的判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知a=log0.65,b=2${\;}^{\frac{4}{5}}$,c=sin1,將a,b,c按從小到大的順序用不等號“<”連接為a<c<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)f(x)=ex+e-x與g(x)=ex-e-x的定義域均為R,則( 。
A.f(x)與g(x)與均為偶函數(shù)B.f(x)為奇函數(shù),g(x)為偶函數(shù)
C.f(x)與g(x)與均為奇函數(shù)D.f(x)為偶函數(shù),g(x)為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1上一點(diǎn)P到橢圓一個焦點(diǎn)的距離為2,則P到另一焦點(diǎn)的距離為( 。
A.3B.5C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖所示的偽代碼,如果輸入x的值為5,則輸出的結(jié)果y為23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點(diǎn)分別為F1,F(xiàn)2,左、右頂點(diǎn)分別為A1,A2,上、下頂點(diǎn)分別為B2,B1,△B2OF2是斜邊長為2的等腰直角三角形,直線l過A2且垂直于x軸,D為l上異于A2的一動點(diǎn),直線A1D交橢圓于點(diǎn)C.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若A1C=2CD,求直線OD的方程;
(3)求證:$\overrightarrow{OC}•\overrightarrow{OD}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=1-$\frac{2}{{2}^{x}+a}$為定義在R上的奇函數(shù).
(1)試判斷函數(shù)的單調(diào)性,并用定義加以證明;
(2)若關(guān)于x的方程f(x)=m在[-1,1]上有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=logax(a>1)在[2,π]上的最大值比最小值大1.則a等于( 。
A.$\frac{π}{2}$B.2C.$\frac{2}{π}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=2\sqrt{3}sinxcosx+{sin^2}x-{cos^2}x$,
(1)求f(x)的值域;
(2)說明怎樣由y=sinx的圖象得到f(x)的圖象.

查看答案和解析>>

同步練習(xí)冊答案