20.如圖所示的算法語句中,輸出的結(jié)果是x=4.

分析 模擬執(zhí)行程序,根據(jù)賦值語句的功能即可計算求值.

解答 解:模擬執(zhí)行程序,可得
x=1
y=3
x=1+3=4
輸出x的值為4.
故答案為:4.

點評 本題主要考查了程序框圖的應(yīng)用,賦值語句的功能,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.斜率k=2,且過點A(0,1)的直線方程是2x-y+1=0;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一個均勻的正四面體的表面上分別標(biāo)有數(shù)字1,2,3,4,現(xiàn)隨機投擲兩次,得到朝下的面上的數(shù)字分別為a,b,若方程x2-ax-b=0至少有一根m∈{1,2,3,4},就稱該方程為“漂亮方程”,則方程為“漂亮方程”的概率為$\frac{3}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.下面有三個命題:
①當(dāng)x>0時,2x+$\frac{1}{{2}^{x}}$的最小值為2;
②將函數(shù)y=cos2x的圖象向右平移$\frac{π}{6}$個單位,可以得到函數(shù)y=sin(2x-$\frac{π}{6}$)的圖象;
③在Rt△ABC中,AC⊥BC,AC=a,BC=b,則△ABC的外接圓半徑r=$\frac{\sqrt{{a}^{2}+^{2}}}{2}$;類比到空間,若三棱錐S-ABC的三條側(cè)棱SA、SB、SC兩兩互相垂直,且長度分別為a、b、c,則三棱錐S-ABC的外接球的半徑R=$\frac{\sqrt{{a}^{2}+^{2}+{c}^{2}}}{2}$.
其中錯誤命題的序號為①②(把你認(rèn)為錯誤命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}x+1\;\;\;(x<0)\\-x-1(x≥0)\end{array}$,則不等式x+(x+1)f(x)≤1的解集是[-3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)=$\frac{a}{x-1}$+bcos($\frac{π}{2}x$),f(1-$\sqrt{2}$)=2,則f(1+$\sqrt{2}$)=( 。
A.0B.-2C.-4D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x) 是定義在[-3,0)∪(0,3]上的奇函數(shù),當(dāng)x∈(0,3]時,f(x) 的圖象如圖所示,那么滿足不等式f(x)≥2x-1 的x的取值范圍是(  )
A.[-3,-2]∪[2,3]B.[-3,-2]∪(0,1]C.[-2,0)∪[1,3]D.[-1,0)∪(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若將函數(shù)f(x)=sin2x+cos2x的圖象向右平移φ(φ>0)個單位,所得圖象關(guān)于原點對稱,則φ的最小值為( 。
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{3π}{8}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知100件產(chǎn)品中有4件次品,無放回地從中抽取2次,每次抽取1件,求下列事件的概率:
(1)第一次取到次品,第二次取到正品;
(2)兩次都取到正品;
(3)兩次抽取中恰有一次取到正品.

查看答案和解析>>

同步練習(xí)冊答案