【題目】已知向量 =(2 cosx,cosx), =(sinx,2cosx)(x∈R),設函數(shù)f(x)= ﹣1. (Ⅰ)求函數(shù)f(x)的單調(diào)減區(qū)間;
(Ⅱ)已知銳角△ABC的三個內(nèi)角分別為A,B,C,若f(A)=2,B= ,邊AB=3,求邊BC.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AC是圓O的直徑,點B在圓O上,∠BAC=30°,BM⊥AC交AC于點M,EA⊥平面ABC,F(xiàn)C∥EA,AC=4,EA=3,F(xiàn)C=1.
(Ⅰ)證明:EM⊥BF;
(Ⅱ)求平面BEF與平面ABC所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=2,且anbn+bn=nbn+1 .
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)設數(shù)列{cn}滿足cn= ,數(shù)列{cn}的前n項和為Tn , 若不等式(﹣1)nλ<Tn+ 對一切n∈N* , 求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) f(x)=1+x﹣ ,g (x)=1﹣x+ ,設函數(shù)F(x)=f(x﹣4)g(x+3),且函數(shù) F ( x) 的零點均在區(qū)間[a,b]( a<b,a,b∈Z )內(nèi),則 b﹣a 的最小值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.命題p:“ ”,則?p是真命題
B.命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
C.“x=﹣1”是“x2+2x+3=0”的必要不充分條件
D.“a>1”是“f(x)=logax(a>0,a≠1)在(0,+∞)上為增函數(shù)”的充要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的短軸長為2 ,離心率為 ,點F為其在y軸正半軸上的焦點. (Ⅰ)求橢圓C的方程;
(Ⅱ)若一動圓過點F,且與直線y=﹣1相切,求動圓圓心軌跡C1的方程;
(Ⅲ)過F作互相垂直的兩條直線l1 , l2 , 其中l(wèi)1交曲線C1于M、N兩點,l2交橢圓C于P、Q兩點,求四邊形PMQN面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(sinx,﹣1), =( cosx,﹣ ),函數(shù)f(x)=( ) ﹣2.
(1)求函數(shù)f(x)的最小正周期T;
(2)已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,其中A為銳角,a=2 ,c=4,且f(A)=1,求A,b和△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的可導函數(shù)f(x)的導函數(shù)為f′(x),滿足f′(x)<f(x),且f(﹣x)=f(2+x),f(2)=1,則不等式f(x)<ex的解集為( )
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=2lnx+ . (Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果對所有的x≥1,都有f(x)≤ax,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com