20.已知函數(shù)f(x)=$\frac{1}{3}$x3-ax+2,f′(0)=-4.
(1)求a的值;
(2)求函數(shù)f(x)的極值.

分析 (1)求出函數(shù)的導(dǎo)數(shù),根據(jù)f′(0)=-4,解出a的值即可;(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可.

解答 解:(1)f(x)=$\frac{1}{3}$x3-ax+2,
∴f′(x)=x2-a,
由f′(0)=-4,得:f′(0)=0-a=-4,
解得:a=4;
(2)由(1)得:f(x)=$\frac{1}{3}$x3-4x+2,
f′(x)=x2-4,
令f′(x)>0,解得:x>2或x<-2,
令f′(x)<0,解得:-2<x<2,
∴f(x)在(-∞,-2)遞增,在(-2,2)遞減,在(2,+∞)遞增,
∴f(x)極大值=f(-2)=$\frac{22}{3}$,f(x)極小值=f(2)=-$\frac{10}{3}$.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.?dāng)?shù)列{an}滿足an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}≤1)}\\{{a}_{n}-1({a}_{n}>1)}\end{array}\right.$且a1=$\frac{6}{7}$,則a20=$\frac{3}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=$\frac{1}{2}$x2-$\frac{1}{3}$ex3,g(x)=f(x)+ex(x-1)
(1)求函數(shù)f(x)極值;
(2)$h(x)=\frac{g'(x)}{x}$,求h(x)最小值
(3)求g(x)單調(diào)區(qū)間,
(4)求證:x>0時,不等式g′(x)≥1+lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)=ex-ax存在大于零的極值點(diǎn),則實(shí)數(shù)a的取值范圍為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=ax2+ex(a∈R)有且僅有一個極值點(diǎn),則實(shí)數(shù)a的取值范圍是(0,+∞)∪{-$\frac{e}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.f(x)=$\frac{{{x^2}-a}}{x+1}$的一個極值點(diǎn)為x=1,則a=( 。
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=kxlnx(k≠0)有極小值$-\frac{1}{e}$.
(1)求實(shí)數(shù)k的值;
(2)設(shè)函數(shù)g(x)=x-2ex-1,證明:當(dāng)x>0時,exf(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=lnx+ax2-(2a+1)x,其中a≠0.
(Ⅰ)當(dāng)a=2時,求f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)a>0時,判斷函數(shù)f(x)零點(diǎn)的個數(shù).(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列說法中,正確的有( 。
①用反證法證明命題“a,b∈R,方程x3+ax+b=0至少有一個實(shí)根”時,要作的假設(shè)是“方程至多有兩個實(shí)根”;
②用數(shù)學(xué)歸納法證明“1+2+22+…+2n+2=2n+3-1,在驗(yàn)證n=1時,左邊的式子是1+2+22
③用數(shù)學(xué)歸納法證明$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+n}$>$\frac{13}{24}$(n∈N*)的過程中,由n=k推導(dǎo)到n=k+1時,左邊增加的項(xiàng)為$\frac{1}{2n+1}$+$\frac{1}{2n+2}$,沒有減少的項(xiàng);
④演繹推理的結(jié)論一定正確;
⑤要證明“$\sqrt{7}$-$\sqrt{3}$>$\sqrt{6}$-$\sqrt{2}$”的最合理的方法是分析法.
A.①④B.C.②③⑤D.

查看答案和解析>>

同步練習(xí)冊答案