8.若函數(shù)f(x)=ex-ax存在大于零的極值點(diǎn),則實(shí)數(shù)a的取值范圍為(1,+∞).

分析 先對(duì)函數(shù)進(jìn)行求導(dǎo)令導(dǎo)函數(shù)等于0,原函數(shù)有大于0的極值點(diǎn)故導(dǎo)函數(shù)有大于零的根.

解答 解:∵y=ex-ax,
∴y'=ex-a.
由題意知ex-a=0有大于0的實(shí)根,
由ex=a,得a=ex,
∵x>0,
∴ex>1.
∴a>1.
故答案為:(1,+∞).

點(diǎn)評(píng) 本題主要考查函數(shù)的極值與其導(dǎo)函數(shù)的關(guān)系,求解過(guò)程中用到了分離參數(shù)的方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.(x-1)9按x的降冪排列系數(shù)最大的項(xiàng)是(  )
A.第4項(xiàng)和第5項(xiàng)B.第5項(xiàng)C.第5項(xiàng)和第3項(xiàng)D.第3項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow$=(-sin$\frac{x}{2}$,-cos$\frac{x}{2}$)其中x∈[$\frac{π}{2}$,π],若|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)$f(x)=\frac{x+1}{e^x}$,g(x)=xf(x)+(1-tx)e-x,t∈R
(1)求函數(shù)f(x)的極大值;
(2)若存在a,b,c∈[0,1]滿足g(a)+g(b)<g(c),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=ax3+bx2的圖象經(jīng)過(guò)點(diǎn)M(1,4),且在x=-2取得極值.
(1)求實(shí)數(shù)a,b的值;
(2)若函數(shù)f(x)在區(qū)間(m,m+1)上單調(diào)遞增,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)f(x)=ax3+x2(a∈R)在x=$-\frac{4}{3}$處取得極值,則a的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{3}$x3-ax+2,f′(0)=-4.
(1)求a的值;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=x+$\frac{1}{e^x}$.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線y=kx與曲線y=f(x)沒有公共點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.棱長(zhǎng)均為2的正四棱錐的體積為$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案