5.?dāng)?shù)列{an}滿足an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}≤1)}\\{{a}_{n}-1({a}_{n}>1)}\end{array}\right.$且a1=$\frac{6}{7}$,則a20=$\frac{3}{7}$.

分析 利用遞推關(guān)系可得數(shù)列的周期性,即可得出.

解答 解:∵an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}≤1)}\\{{a}_{n}-1({a}_{n}>1)}\end{array}\right.$且a1=$\frac{6}{7}$,
∴a2=2a1=$\frac{12}{7}$,a3=a2-1=$\frac{5}{7}$,a4=2a3=$\frac{10}{7}$,a5=a4-1=$\frac{3}{7}$,a6=2a5=$\frac{6}{7}$=a1,
∴an+5=an
則a20=a5×3+5=a5=$\frac{3}{7}$.
故答案為:$\frac{3}{7}$.

點評 本題考查了遞推關(guān)系、數(shù)列的周期性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.平面向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(-2,x),若$\overrightarrow{a}$與$\overrightarrow$共線,則x等于( 。
A.4B.-4C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知在數(shù)列{an}中,an+1=2an+3•2n+1,且a1=2,則數(shù)列{an}的通項公式為an=(3n-2)×2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.(x-1)9按x的降冪排列系數(shù)最大的項是(  )
A.第4項和第5項B.第5項C.第5項和第3項D.第3項

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知曲線$\frac{|x|}{2}$-$\frac{|y|}{3}$=1與直線y=2x+m有兩個交點,則m的取值范圍是( 。
A.(-∞,-4)∪(4,+∞)B.(-4,4)C.(-∞,-3)∪(3,+∞)D.(-3,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知log4(x+11)=2,則x等于( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.下列命題中,正確命題的序號是②④
①若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$;②若$\overrightarrow{a}$=$\overrightarrow$,則$\overrightarrow{a}$∥$\overrightarrow$;③若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$=$\overrightarrow$;④若$\overrightarrow{a}$=$\overrightarrow$,$\overrightarrow$=$\overrightarrow{c}$,則$\overrightarrow{a}$=$\overrightarrow{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow$=(-sin$\frac{x}{2}$,-cos$\frac{x}{2}$)其中x∈[$\frac{π}{2}$,π],若|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{3}$x3-ax+2,f′(0)=-4.
(1)求a的值;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

同步練習(xí)冊答案