【題目】如圖,已知為等邊三角形,為等腰直角三角形,,平面平面ABD,點E與點D在平面ABC的同側(cè),且,.FAD中點,連接EF.

1)求證:平面ABC;

2)求二面角的余弦值.

【答案】1)見解析;(2

【解析】

1)取AB中點為O,連接OC、OF,證明四邊形OCEF為平行四邊形,EFOC,然后證明EF∥平面ABC;

2)以O為坐標(biāo)原點,分別以、的方向為x、y、z軸正方向,建立空間直角坐標(biāo)系.不妨令正三角形ABC的邊長為2,求出相關(guān)的的坐標(biāo),求出平面AEC的法向量,平面AED的法向量,取法向量的方向一進(jìn)一出,利用空間向量的公式求解即可.

1)證明:取AB中點為O,連接OC、OF,∵O、F分別為AB、AD中點,

OFBDBD2OF,又CEBDBD2CE,∴CEOFCEOF,∴四邊形OCEF為平行四邊形,∴EFOC

OC平面ABCEF平面ABC,∴EF∥平面ABC

2)∵三角形ABC為等邊三角形,OAB中點,∴OCAB,∵平面ABC⊥平面ABD且平面ABC∩平面ABDAB,

BDABBD平面ABD,∴BD⊥平面ABC,又OFBD,∴OF⊥平面ABC,

O為坐標(biāo)原點,分別以、、的方向為x、y、z軸正方向,建立空間直角坐標(biāo)系.

不妨令正三角形ABC的邊長為2,則O00,0),A10,0),,,D(﹣1,0,2),

,設(shè)平面AEC的法向量為,則,

不妨令,則,

設(shè)平面AED的法向量為,

,

∴所求二面角CAED的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列滿足

①存在可以生成的數(shù)列是常數(shù)數(shù)列;

②“數(shù)列中存在某一項”是“數(shù)列為有窮數(shù)列”的充要條件;

③若為單調(diào)遞增數(shù)列,則的取值范圍是

④只要,其中,則一定存在;

其中正確命題的序號為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點,C、D兩點的坐標(biāo)為,曲線上的動點P滿足.又曲線上的點A、B滿足.

1)求曲線的方程;

2)若點A在第一象限,且,求點A的坐標(biāo);

3)求證:原點到直線AB的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列 的前項和為,對一切,點都在函數(shù)的圖象上.

1)求,歸納數(shù)列的通項公式(不必證明);

2)將數(shù)列依次按1項、2項、3項、4項循環(huán)地分為,, ;,,;,,分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為,求的值;

3)設(shè)為數(shù)列的前項積,若不等式對一切都成立,其中,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)

1)當(dāng)時,求方程的根的個數(shù);

2)若恒成立,求的取值范圍.

注: 為自然對數(shù)的底數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)在“精準(zhǔn)扶貧”行動中,決定幫助一貧困山區(qū)將水果運出銷售.現(xiàn)有8輛甲型車和4輛乙型車,甲型車每次最多能運6噸且每天能運4次,乙型車每次最多能運10噸且每天能運3次,甲型車每天費用320元,乙型車每天費用504元.若需要一天內(nèi)把180噸水果運輸?shù)交疖囌,則通過合理調(diào)配車輛運送這批水果的費用最少為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】教材曾有介紹:圓上的點處的切線方程為。我們將其結(jié)論推廣:橢圓上的點處的切線方程為,在解本題時可以直接應(yīng)用。已知,直線與橢圓有且只有一個公共點.

(1)求的值;

(2)設(shè)為坐標(biāo)原點,過橢圓上的兩點分別作該橢圓的兩條切線、,且交于點。當(dāng)變化時,求面積的最大值;

(3)在(2)的條件下,經(jīng)過點作直線與該橢圓交于、兩點,在線段上存在點,使成立,試問:點是否在直線上,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,且,.

1)計算,,,并求數(shù)列的通項公式;

2)若數(shù)列滿足,求證:數(shù)列是等比數(shù)列;

3)由數(shù)列的項組成一個新數(shù)列,,,設(shè)為數(shù)列的前項和,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)甲乙兩地相距100海里,船從甲地勻速駛到乙地,已知某船的最大船速是36海里/時:當(dāng)船速不大于每小時30海里/時,船每小時使用的燃料費用和船速成正比;當(dāng)船速不小于每小時30海里/時,船每小時使用的燃料費用和船速的平方成正比;當(dāng)船速為30海里/時,它每小時使用的燃料費用為300元;其余費用(不論船速為多少)都是每小時480元;

1)試把每小時使用的燃料費用P(元)表示成船速v(海里/時)的函數(shù);

2)試把船從甲地行駛到乙地所需要的總費用Y表示成船速v的函數(shù);

3)當(dāng)船速為每小時多少海里時,船從甲地到乙地所需要的總費用最少?

查看答案和解析>>

同步練習(xí)冊答案