4.已知函數(shù)f(x)=x2-3x+lnx.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)若對于任意的x1,x2∈(1,+∞),x1≠x2,都有$|{\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}}|>k$恒成立,求實數(shù)k的取值范圍.

分析 (Ⅰ)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,求出函數(shù)的極值即可;
(Ⅱ)不妨設x1>x2>1,原不等式等價于f(x1)-f(x2)>kx1-kx2,令h(x)=f(x)-kx=x2-(3+k)x+lnx,問題等價于h′(x)=2x-(3+k)+$\frac{1}{x}$≥0在(1,+∞)上恒成立,得到3+k≤2x+$\frac{1}{x}$在(1,+∞)上恒成立,根據(jù)函數(shù)的單調(diào)性求出k的范圍即可.

解答 解:(Ⅰ)f(x)的定義域為(0,+∞),
f′(x)=2x-3+$\frac{1}{x}$=$\frac{(2x-1)(x-1)}{x}$,
當x變化時,f′(x),f(x)的變化情況如下表:

x(0,$\frac{1}{2}$)$\frac{1}{2}$($\frac{1}{2}$,1)1(1,+∞)
f′(x)+0-0+
f(x)單調(diào)遞增極大值單調(diào)遞減極小值單調(diào)遞增
當x=$\frac{1}{2}$時,函數(shù)f(x)取得極大值為-$\frac{5}{4}$-ln2,
當x=1時,函數(shù)f(x)取得極小值為-2;
(Ⅱ)由(Ⅰ)知,f(x)在區(qū)間(1,+∞)上單調(diào)遞增,不妨設x1>x2>1,
則f(x1)-f(x2)>0,所以原不等式等價于f(x1)-f(x2)>kx1-kx2,
即f(x1)-kx1>f(x2)-kx2,
令h(x)=f(x)-kx=x2-(3+k)x+lnx,
則原不等式等價于h(x)在(1,+∞)上單調(diào)遞增,
即等價于h′(x)=2x-(3+k)+$\frac{1}{x}$≥0在(1,+∞)上恒成立,
也等價于3+k≤2x+$\frac{1}{x}$在(1,+∞)上恒成立,
令g(x)=2x+$\frac{1}{x}$,x∈(1,+∞),
因為g′(x)>0在(1,+∞)上恒成立,
所以g(x)>g(1)=3,即g(x)min=3,
所以3+k≤3,k≤0,
故得所求實數(shù)k的取值范圍為(-∞,0].

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用以及函數(shù)恒成立問題,考查轉(zhuǎn)化思想,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.平面直角坐標系xoy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=2-\frac{1}{2}t\\ y=1+\frac{{\sqrt{3}}}{2}t\end{array}\right.(t為參數(shù))$,以O為極點,x軸的非負半軸為極軸建立極坐標系,曲線C的極坐標方程是ρ2(4cos2θ+sin2θ)=16.
(1)寫出直線l的普通方程與曲線C的參數(shù)方程;
(2)設M(x,y)為曲線C上任意一點,求$\sqrt{3}x+\frac{1}{2}y$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.同時擲3枚硬幣,那么互為對立事件的是( 。
A.最少有1枚正面和最多有1枚正面B.最少有2枚正面和恰有1枚正面
C.最多有1枚正面和最少有2枚正面D.最多有1枚正面和恰有2枚正面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.求由拋物線y=2x2與直線x=2,y=0所圍成的平面圖形的面積時,將區(qū)間[0,2]等分成n個小區(qū)間,則第i個區(qū)間為( 。
A.[$\frac{i-1}{n}$,$\frac{i}{n}$]B.[$\frac{i}{n}$,$\frac{i+1}{n}$]C.[$\frac{2(i-2)}{n}$,$\frac{2(i-1)}{n}$]D.[$\frac{2(i-1)}{n}$,$\frac{2i}{n}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知復數(shù)z滿足|3+4i|+z=1+3i.
(Ⅰ)求$\overline{z}$;
(Ⅱ)求$\frac{(1+i)^{2}(3+4i)}{z}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下表給出的是兩個具有線性相關關系的變量x,y的一組樣本數(shù)據(jù):
x34567
y4.0a-5.4-0.50.5b-0.6
得到的回歸方程為y=bx+a.若已知上述樣本數(shù)據(jù)的中心為(5,0.9),則當x每增加1個單位時,y就( 。
A.增加1.4個單位B.減少1.4個單位C.增加7.9個單位D.減少7.9個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知某學校有1680名學生,現(xiàn)在采用系統(tǒng)抽樣的方法抽取84人,調(diào)查他們對學校食堂的滿意程度,將1680人,按1,2,3,…,1680隨機編號,則在抽取的84人中,編號落在[61,160]內(nèi)的人數(shù)為( 。
A.7B.5C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)$f(x)=\frac{lnx}{x}$,g(x)=ex
(Ⅰ)若關于x的不等式f(x)≤mx≤g(x)恒成立,求實數(shù)m的取值范圍;
(Ⅱ)若x1>x2>0,求證:[x1f(x1)-x2f(x2)]$({x_1^2+x_2^2})$>2x2(x1-x2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)(0<ω<1)的圖象關于點(-2,0)對稱,則ω=$\frac{π}{6}$.

查看答案和解析>>

同步練習冊答案