1.已知函數(shù)f(x)=alnx+$\frac{{x}^{2}}{2}$+bx在x=1處取得極值-$\frac{5}{2}$.
(1)求a,b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

分析 (1)求出函數(shù)的導(dǎo)數(shù),根據(jù)f(1)=-$\frac{5}{2}$,f′(1)=0,求出a,b的值即可;(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可.

解答 解:(1)函數(shù)f(x)=alnx+$\frac{{x}^{2}}{2}$+bx,
定義域是(0,+∞),
∴f′(x)=$\frac{a}{x}$+x+b,
由題意得:$\left\{\begin{array}{l}{f(1)=-\frac{5}{2}}\\{f′(1)=0}\end{array}\right.$,即$\left\{\begin{array}{l}{\frac{1}{2}+b=-\frac{5}{2}}\\{a+1+b=0}\end{array}\right.$,
解得a=2,b=-3;
(2)由(1)得:f′(x)=$\frac{(x-1)(x-2)}{x}$,(x>0),
令f′(x)>0,解得:0<x<1或x>2,令f′(x)<0,解得:1<x<2,
∴f(x)在(0,1)遞增,在(1,2)遞減,在(2,+∞)遞增.

點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,設(shè)過點N(1,0)的動直線l交橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)于A,B兩點,且|AB|的最小值為1,橢圓C的離心率e=$\frac{\sqrt{3}}{2}$.
(1)求橢圓C的方程;
(2)是否存在實數(shù)t,使得$\frac{1}{|NA{|}^{2}}$+$\frac{1}{|NB{|}^{2}}$+$\frac{t}{|NA|•|NB|}$為常數(shù)?求實數(shù)t的值及該常數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若函數(shù)y=cosωx(ω>0)在區(qū)間[0,1]上出現(xiàn)了50次最小值,則ω的取值范圍是[99π,101π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ex-a(x+1)(a≠0).
(1)討論f(x)的單調(diào)性;
(2)若f(x)>a2-a,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=alnx+x2-1
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若f(x)>(a+1)lnx+ax-1在(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{ax^2-2}{bx+c}$(a、b、c∈Z)是奇函數(shù).
(1)若f(1)=1,f(2)-4>0,求f(x);
(2)若b=1,且f(x)>1對任意的x∈(1,+∞)都成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=(x2-2x)•lnx+ax2+2.
(Ⅰ)當(dāng)a=-1時,求f(x)在(1,f(1))處的切線方程;
(Ⅱ)設(shè)函數(shù)g(x)=f(x)-x-2,
①當(dāng)a=1時,若1<x≤e,g(x)≤m恒成立,求m的取值范圍
②若g(x)有且僅有一個零點,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=$\left\{\begin{array}{l}{-x-3,x<0}\\{{x}^{\frac{1}{2},x≥0}}\end{array}\right.$的圖象與函數(shù)$g(x)={log_{\frac{1}{2}}}({x+1})$的圖象的交點個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知拋物線y2=2px(p>0)上一點M(1,m)到其焦點的距離為4,雙曲線x2-$\frac{y^2}{a}$=1的左頂點為A,若雙曲線的一條漸近線與直線AM垂直,則實數(shù)a的值為( 。
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.-3D.3

查看答案和解析>>

同步練習(xí)冊答案