【題目】已知橢圓的左、右焦點(diǎn)分別為,過點(diǎn)的直線與橢圓交于兩點(diǎn),的周長(zhǎng)為8,直線被橢圓截得的線段長(zhǎng)為.

(1)求橢圓的方程;

(2)設(shè)是橢圓上兩動(dòng)點(diǎn),線段的中點(diǎn)為,的斜率分別為為坐標(biāo)原點(diǎn)),且,求的取值范圍.

【答案】(1)(2)

【解析】

(1)結(jié)合橢圓定義和的周長(zhǎng)為8求出的值,再利用直線被橢圓截得的線段長(zhǎng)為求出的值,即可得到橢圓的方程

(2)討論當(dāng)的斜率不存在時(shí)和當(dāng)的斜率存在時(shí),聯(lián)立直線方程與橢圓方程,結(jié)合求解的取值范圍

(1)根據(jù)題意.

代入橢圓方程得,

因?yàn)橹本被橢圓截得的線段長(zhǎng)為,

所以,解得,

所以橢圓的方程為.

(2)設(shè),由,得,

當(dāng)的斜率不存在時(shí),,,,又,

,這時(shí).

當(dāng)的斜率存在時(shí),設(shè)直線,由得

,

,結(jié)合

由①②知,

綜上的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一袋中裝有形狀、大小都相同的6只小球,其中有3只紅球、2只黃球和1只藍(lán)球.若從中1次隨機(jī)摸出2只球,則1只紅球和1只黃球的概率為__________,2只球顏色相同的概率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是某省從121日至224日的新冠肺炎每日新增確診病例變化曲線圖.


若該省從121日至224日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列的前n項(xiàng)和為,則下列說法中正確的是(

A.數(shù)列是遞增數(shù)列B.數(shù)列是遞增數(shù)列

C.數(shù)列的最大項(xiàng)是D.數(shù)列的最大項(xiàng)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

求函數(shù)的單調(diào)區(qū)間;

如果對(duì)于任意的,總成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】Fibonacci數(shù)列又稱黃金分割數(shù)列,因?yàn)楫?dāng)n趨向于無窮大時(shí),其相鄰兩項(xiàng)中的前項(xiàng)與后項(xiàng)的比值越來越接近黃金分割數(shù).已知Fibonacci數(shù)列的遞推關(guān)系式為

1)證明:Fibonacci數(shù)列中任意相鄰三項(xiàng)不可能成等比數(shù)列;

2Fibonacci數(shù)列{an}的偶數(shù)項(xiàng)依次構(gòu)成一個(gè)新數(shù)列,記為{bn},證明:{bn1-H2·bn}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)令函數(shù),若函數(shù)有且只有一個(gè)零點(diǎn),試判斷與3的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為,,橢圓的長(zhǎng)軸長(zhǎng)與焦距之比為,過且斜率不為的直線交于兩點(diǎn).

(1)當(dāng)的斜率為時(shí),求的面積;

(2)若在軸上存在一點(diǎn),使是以為頂點(diǎn)的等腰三角形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點(diǎn)(

A.向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的倍(縱坐標(biāo)不變)

B.向右平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變)

C.向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的倍(縱坐標(biāo)不變)

D.向右平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的倍(縱坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中隨機(jī)抽取部分高一學(xué)生調(diào)查其上學(xué)路上所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中上學(xué)路上所需時(shí)間的范圍是,樣本數(shù)據(jù)分組為,,,

(Ⅰ)求直方圖中的值

(Ⅱ)如果上學(xué)路上所需時(shí)間不少于1小時(shí)的學(xué)生可申請(qǐng)?jiān)趯W(xué)校住宿,若招生1200名,請(qǐng)估計(jì)新生中有多少名學(xué)生可以申請(qǐng)住宿;

(Ⅲ)從學(xué)校的高一學(xué)生中任選4名學(xué)生,這4名學(xué)生中上學(xué)路上所需時(shí)間少于40分鐘的人數(shù)記為,求的分布列和數(shù)學(xué)期望.(以直方圖中頻率作為概率

查看答案和解析>>

同步練習(xí)冊(cè)答案