化簡sin(π+α)cos(
2
+α)+sin(
π
2
+α)cos(π+α)=
 
考點:運用誘導公式化簡求值
專題:計算題,三角函數(shù)的求值
分析:運用誘導公式及同角三角函數(shù)關系式即可化簡求值.
解答: 解:sin(π+α)cos(
2
+α)+sin(
π
2
+α)cos(π+α)=(-sinα)sinα+cosα(-cosα)=-sin2α-cos2α=-1.
故答案為:-1.
點評:本題主要考查了誘導公式及同角三角函數(shù)關系式的應用,屬于基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,內角A和B所對的邊分別為a和b,則a>b是sinA>sinB的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα=
12
13
,α∈(
π
2
,π)
,則sin2α=
 
,cos2α=
 
,tan2α=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:2log525--2lg2-lg25+(
1
27
 -
2
3
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={1,2,3,4,5},B={1,3,5},則∁AB=( 。
A、{1,3,5}
B、{2,4}
C、{1,2,3,4,5}
D、∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2+i
i
=1+mi(m∈R),則m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“?x≤0,x2-x>0”的否定是( 。
A、?x>0,x2-x≤0
B、?x≤0,x2-x≤0
C、?x>0,x2-x≤0
D、?x≤0,x2-x≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三角形 A BC中,∠C=60°,AC+BC=6,A B=4,則AB邊上的高為( 。
A、
5
3
6
B、
20
3
C、
4
3
3
D、
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,錯誤的是( 。
A、平行于同一平面的兩個平面平行
B、垂直于同一個平面的兩個平面平行
C、若a,b是異面直線,則經過直線a與直線b平行的平面有且只有一個
D、若一個平面與兩個平行平面相交,則交線平行

查看答案和解析>>

同步練習冊答案