若在拋物線y=ax2(a>0)的上方做一個(gè)半徑為r的圓與拋物線相切于原點(diǎn)O,且該圓與拋物線沒(méi)有別的公共點(diǎn),則r的最大值是?
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,作圖題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:由題意設(shè)圓的方程為x2+(y-r)2=r2,與拋物線y=ax2(a>0)聯(lián)立,從而可化得ay2-2ary+y=0;從而得
2ar-1
a
≤0,從而求最大值.
解答: 解:如圖,設(shè)圓的方程為x2+(y-r)2=r2,
與拋物線y=ax2(a>0)聯(lián)立消x得,
y
a
+(y-r)2=r2,
即ay2-2ary+y=0;
則y=0或y=
2ar-1
a
;
2ar-1
a
≤0,
則r≤
1
2a
;
故r的最大值是
1
2a
點(diǎn)評(píng):本題考查了圓與圓錐曲線的位置關(guān)系應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,a3=3,a8=33,則{an}的公差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c的圖象過(guò)點(diǎn)(0,1),且f(x)>0的解集是(-1,3),
(1)求f(x)的解析式;
(2)若f(sinα)+f(cosα)=
5
3
(0<α<π),求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一只漁船遭遇臺(tái)風(fēng)遇險(xiǎn),發(fā)出求救信號(hào),在遇險(xiǎn)地A西南方向10 n mile的B處有一只海船收到信號(hào)立即偵察,發(fā)現(xiàn)遇險(xiǎn)船只沿南偏東75°,以9 n mile∕h的速度向前航行,漁船以21 n mile∕h的速度前往營(yíng)救,并在最短時(shí)間內(nèi)與漁船靠近.
(1)求漁船所花的最短時(shí)間;
(2)求漁船的航程;
(3)求漁船航向與BA的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x3+3x2+9x+a,在區(qū)間[-2,2]上的最大值為20,則實(shí)數(shù)a=( 。
A、2B、-2C、3D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-1,則f(x+1)的遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用和(差)角公式求下列各三角函數(shù)的值.
(1)sin(-
12
);
(2)cos(-
61π
12
);
(3)tan
35π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

分別以雙曲線G:
x2
2
-
y2
2
=1的焦點(diǎn)為頂點(diǎn),以雙曲線G的頂點(diǎn)為焦點(diǎn)作橢圓C.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)P的坐標(biāo)為(0,
2
)
,在y軸上是否存在定點(diǎn)M,過(guò)點(diǎn)M且斜率為k的動(dòng)直線l交橢圓于A、B兩點(diǎn),使以AB為直徑的圓恒過(guò)點(diǎn)P,若存在,求出M的坐標(biāo)和△PAB面積的最大值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
16
-
y2
9
=1,P為雙曲線上一點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),且∠F1PF2=
π
3
,則△F1PF2的面積是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案