9.已知等差數(shù)列{an}的前7項和為14,則${e^{a_2}}•{e^{a_3}}•{e^{a_5}}•{e^{a_6}}$=( 。
A.e2B.e4C.e8D.e16

分析 由等差數(shù)列{an}的前7項和為14,得a1+a7=4,從而利用等差數(shù)列通項公式得a2+a3+a5+a6=2(a1+a7)=8,由此能求出${e^{a_2}}•{e^{a_3}}•{e^{a_5}}•{e^{a_6}}$的值.

解答 解:∵等差數(shù)列{an}的前7項和為14,
∴${S}_{7}=\frac{7}{2}({a}_{1}+{a}_{7})=14$,解得a1+a7=4,
∴a2+a3+a5+a6=2(a1+a7)=8,
∴${e^{a_2}}•{e^{a_3}}•{e^{a_5}}•{e^{a_6}}$=${e}^{{a}_{2}+{a}_{3}+{a}_{5}+{a}_{6}}$=e8
故選:C.

點(diǎn)評 本題考查等差數(shù)列的性質(zhì)的應(yīng)用,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的通項公式、前n項和公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=$\frac{1}{3}$x3-(a+$\frac{1}{2}$)x2+(a2+a)x-$\frac{1}{2}$a2+$\frac{1}{2}$有兩個以上的零點(diǎn),則a的取值范圍是( 。
A.(-2,-1)B.(-∞,-2)∪(-1,+∞)C.$(-\root{3}{{\frac{3}{2}}},-1)$D.$(-∞,-\root{3}{{\frac{3}{2}}})∪(-1,+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,點(diǎn)D在BC邊上,AD平分∠BAC,AB=6,AD=3$\sqrt{2}$,AC=4.
(1)利用正弦定理證明:$\frac{AB}{AC}=\frac{BD}{DC}$;
(2)求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=x2-2ax+b(x∈R),給出下列命題:
①存在實數(shù)ɑ,使f(x)為偶函數(shù).
②若f(0)=f(2),則 f(x)的圖象關(guān)于x=1對稱.
③若a2-b≤0,則f(x)在區(qū)間[a,+∞)上是增函數(shù)
④若a2-b-2>0,則函數(shù)h(x)=f(x)-2有2個零點(diǎn).
其中正確命題的序號為①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,已知曲線C1:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}\right.(θ為參數(shù))$,以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線l:ρ(2cosθ-sinθ)=6.
(1)將曲線C1上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的$\sqrt{3}$、2倍后得到曲線C2;試寫出直線l的直角坐標(biāo)方程和曲線C2的參數(shù)方程;
(2)在曲線C2上求一點(diǎn)P,使點(diǎn)P到直線l的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知焦點(diǎn)在x軸上的雙曲線漸近線方程為$y=±\frac{2}{3}x$,則此雙曲線的離心率等于( 。
A.$\frac{{\sqrt{5}}}{3}$B.$\frac{{\sqrt{13}}}{2}$C.$\frac{3}{2}$D.$\frac{{\sqrt{13}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知三棱錐S-ABC的底面是以AB為斜邊的等腰直角三角形,AB=2,SA=SB=SC=2,則三棱錐的外接球的球心到平面ABC的距離是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)f(x)=$\frac{x}{1+|x|}$,則使得f(x2-2x)>f(3x-6)成立的x的取值范圍是( 。
A.(-∞,2)∪(3,+∞)B.(2,3)C.(-∞,2)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)命題p:直線x-y+1=0的傾斜角為135°;命題q:平面直角坐標(biāo)系內(nèi)的三點(diǎn)A(-1,-3),B(1,1),C(2,2)共線.則下列判斷正確的是( 。
A.¬p為假B.¬p∧¬q為真C.p∨q為真D.q為真

查看答案和解析>>

同步練習(xí)冊答案