A. | e2 | B. | e4 | C. | e8 | D. | e16 |
分析 由等差數(shù)列{an}的前7項和為14,得a1+a7=4,從而利用等差數(shù)列通項公式得a2+a3+a5+a6=2(a1+a7)=8,由此能求出${e^{a_2}}•{e^{a_3}}•{e^{a_5}}•{e^{a_6}}$的值.
解答 解:∵等差數(shù)列{an}的前7項和為14,
∴${S}_{7}=\frac{7}{2}({a}_{1}+{a}_{7})=14$,解得a1+a7=4,
∴a2+a3+a5+a6=2(a1+a7)=8,
∴${e^{a_2}}•{e^{a_3}}•{e^{a_5}}•{e^{a_6}}$=${e}^{{a}_{2}+{a}_{3}+{a}_{5}+{a}_{6}}$=e8.
故選:C.
點(diǎn)評 本題考查等差數(shù)列的性質(zhì)的應(yīng)用,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的通項公式、前n項和公式的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,-1) | B. | (-∞,-2)∪(-1,+∞) | C. | $(-\root{3}{{\frac{3}{2}}},-1)$ | D. | $(-∞,-\root{3}{{\frac{3}{2}}})∪(-1,+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{3}$ | B. | $\frac{{\sqrt{13}}}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{{\sqrt{13}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2)∪(3,+∞) | B. | (2,3) | C. | (-∞,2) | D. | (3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬p為假 | B. | ¬p∧¬q為真 | C. | p∨q為真 | D. | q為真 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com