【題目】已知命題p:(x-2)(x+m)≤0,q:x2+(1-m)x-m≤0.
(1)若m=3,命題“p∧q”為真命題,求實(shí)數(shù)x的取值范圍.
(2)若p是q的必要不充分條件,求實(shí)數(shù)m的取范圍.
【答案】(1)[-1,2] (2)1≤m≤2
【解析】
(1)若m=3,根據(jù)命題“p且q”為真,則p,q同時為真,即可得到結(jié)論.(2)根據(jù)充分條件和必要條件的定義進(jìn)行轉(zhuǎn)化求解即可.
(1)當(dāng)m=3時,p:-3≤x≤2,q:-1≤x≤3.
因?yàn)槊}“p∧q”為真命題,
所以p和q都為真命題,
所以解得-1≤x≤2.
所以實(shí)數(shù)x的取值范圍是[-1,2].
(2)因?yàn)?/span>p:(x-2)(x+m)≤0,
所以記A={x|(x-2)(x+m)≤0}.
因?yàn)?/span>q:x2+(1-m)x-m≤0,
所以記B={x|x2+(1-m)x-m≤0}
={x|(x-m)(x+1)≤0}.
因?yàn)?/span>p是q的必要不充分條件,
所以qp,但pq,
所以集合B為集合A的真子集,
因此有或解得1≤m≤2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,g(x)=lnx,其中e為自然對數(shù)的底數(shù).
(1)求函數(shù)y=f(x)g(x)在x=1處的切線方程;
(2)若存在x1 , x2(x1≠x2),使得g(x1)﹣g(x2)=λ[f(x2)﹣f(x1)]成立,其中λ為常數(shù),求證:λ>e;
(3)若對任意的x∈(0,1],不等式f(x)g(x)≤a(x﹣1)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是
A. 命題“若,則”的否命題為“若,則”;
B. 命題“”的否定是“”;
C. 命題“若x=y,則”的逆否命題為真命題;
D. “” 是“”的必要不充分條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線y=kx﹣4,k>0與拋物線y2=2 x交于A,B兩點(diǎn),與拋物線的準(zhǔn)線交于點(diǎn)C,若AB=2BC,則k=( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,右焦點(diǎn)為。斜率為1的直線與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為。
(1)求橢圓的方程;
(2)求的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣2a|+|x+ |
(1)當(dāng)a=1時,求不等式f(x)>4的解集;
(2)若不等式f(x)≥m2﹣m+2 對任意實(shí)數(shù)x及a恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于實(shí)數(shù)x的一元二次方程.
Ⅰ若a是從區(qū)間中任取的一個整數(shù),b是從區(qū)間中任取的一個整數(shù),求上述方程有實(shí)根的概率.
Ⅱ若a是從區(qū)間任取的一個實(shí)數(shù),b是從區(qū)間任取的一個實(shí)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,過點(diǎn)且互相垂直的兩條直線分別與圓交于點(diǎn)A,B,與圓交于點(diǎn)C,D.
(1) 若AB=,求CD的長;
(2)若直線斜率為2,求的面積;
(3) 若CD的中點(diǎn)為E,求△ABE面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 命題“若x2=1,則x=1”的否命題是“若x2=1,則x≠1”
B. 若命題p:x0∈R,,則:x∈R,x2-2x-1<0
C. 命題“若x=y(tǒng),則sin x=sin y”的逆否命題為真命題
D. “x=-1”是“x2-5x-6=0”的必要不充分條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com