A. | f(x)=$\frac{2}{3}$cos(3x-$\frac{π}{4}$) | B. | f(x)=$\frac{2}{3}$cos(3x+$\frac{π}{4}$) | C. | f(x)=$\frac{2}{3}$$\sqrt{2}$cos(3x+$\frac{π}{4}$) | D. | f(x)=$\frac{2}{3}$$\sqrt{2}$cos(3x-$\frac{π}{4}$) |
分析 由函數(shù)的圖象的頂點(diǎn)坐標(biāo)以及所給的圖象求出A,由周期求出ω,由特殊點(diǎn)的坐標(biāo)求出φ和A的值,可得函數(shù)的解析式.
解答 解:根據(jù)函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象,
再根據(jù)所給的選項(xiàng),可得$\frac{T}{2}$=$\frac{π}{ω}$=$\frac{11π}{12}$-$\frac{7π}{12}$,∴ω=3.
再根據(jù)圖象經(jīng)過(guò)點(diǎn)($\frac{7π}{12}$,0),可得3•$\frac{7π}{12}$+φ=kπ+$\frac{π}{2}$,k∈Z,∴φ=-$\frac{π}{4}$,
∴函數(shù)f(x)=Acos(3x-$\frac{π}{4}$),再把點(diǎn)($\frac{π}{2}$,-$\frac{2}{3}$)代入,可得-$\frac{2}{3}$=Asin(3•$\frac{π}{2}$-$\frac{π}{4}$)=-$\frac{\sqrt{2}}{2}$A,可得A=$\frac{2\sqrt{2}}{3}$,
故選:D.
點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)以及所給的圖象求出A,由周期求出ω,由特殊點(diǎn)的坐標(biāo)求出φ和A的值,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com