在美化校園的植樹活動(dòng)中,某同學(xué)共種了6棵樹,各棵樹的成活與否是相互獨(dú)立的每棵樹成活的概率均為p.已知該同學(xué)所種樹中有3棵成活的概率為數(shù)學(xué)公式
(Ⅰ)求p的值;
(Ⅱ)若有3棵或3棵以上的樹未成活,則需要補(bǔ)種,求需要補(bǔ)種的概率;
(Ⅲ)設(shè)ξ為成活樹的棵數(shù),求Eξ.

解:(Ⅰ)∵各棵樹成活與否是相互獨(dú)立的,每棵樹成活的概率均為p,
本題是一個(gè)獨(dú)立重復(fù)試驗(yàn),根據(jù)獨(dú)立重復(fù)試驗(yàn)公式得到
,解得

(Ⅱ)∵有3棵或3棵以上的樹未成活,則需要補(bǔ)種
記“需要補(bǔ)種”為事件A,則包括有
A1:3顆未成活、A2:有4顆未成活、A3:有5顆未成活、A4:有6顆未成活共四種情況
,
,

(Ⅲ)由題意知,ξ服從二項(xiàng)分布
∴Eξ=np=3,或ξ的分布列為


分析:(Ⅰ)各棵樹成活與否是相互獨(dú)立的,每棵樹成活的概率均為p,本題是一個(gè)獨(dú)立重復(fù)試驗(yàn),根據(jù)獨(dú)立重復(fù)試驗(yàn)公式得到等式,解出未知數(shù)即可.
(Ⅱ)有3棵或3棵以上的樹未成活,則需要補(bǔ)種,需要補(bǔ)種包括則包括有:3顆未成活、有4顆未成活、有5顆未成活、有6顆未成活共四種情況,用獨(dú)立重復(fù)試驗(yàn)公式寫出結(jié)果.
(Ⅲ)由題意知,ξ為成活樹的棵數(shù),各棵樹的成活與否是相互獨(dú)立的,得到變量符合二項(xiàng)分布,根據(jù)二項(xiàng)分布寫出分布列和期望.
點(diǎn)評(píng):解決離散型隨機(jī)變量分布列問題時(shí),主要依據(jù)概率的有關(guān)概念和運(yùn)算,同時(shí)還要注意題目中離散型隨機(jī)變量服從什么分布,若服從特殊的分布則運(yùn)算要簡單的多.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在美化校園的植樹活動(dòng)中,某同學(xué)共種了6棵樹,各棵樹的成活與否是相互獨(dú)立的每棵樹成活的概率均為p.已知該同學(xué)所種樹中有3棵成活的概率為
516

(Ⅰ)求p的值;
(Ⅱ)若有3棵或3棵以上的樹未成活,則需要補(bǔ)種,求需要補(bǔ)種的概率;
(Ⅲ)設(shè)ξ為成活樹的棵數(shù),求Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 在美化校園的植樹活動(dòng)中,某同學(xué)共種了6棵樹,各棵樹的成活與否是相互獨(dú)立的, 每棵樹成活的概率均為p.已知該同學(xué)所種樹中有3棵成活的概率為

  (I)求p的值;

  (II)若有3棵或3棵以上的樹未成活,則需要補(bǔ)種,求需要補(bǔ)種的概率;

  (Ⅲ)設(shè)為成活樹的棵數(shù),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年甘肅省蘭州市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

在美化校園的植樹活動(dòng)中,某同學(xué)共種了6棵樹,各棵樹的成活與否是相互獨(dú)立的每棵樹成活的概率均為p.已知該同學(xué)所種樹中有3棵成活的概率為
(Ⅰ)求p的值;
(Ⅱ)若有3棵或3棵以上的樹未成活,則需要補(bǔ)種,求需要補(bǔ)種的概率;
(Ⅲ)設(shè)ξ為成活樹的棵數(shù),求Eξ.

查看答案和解析>>

同步練習(xí)冊(cè)答案