已知函數(shù)f(x)=3x3-9x+5.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)f(x)在[-2,2]上的最大值和最小值.
解:(I)f′(x)=9x
2-9.(2分)
令9x
2-9>0,(4分)解
此不等式,得x<-1或x>1.
因此,函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,-1)和(1,+∞).((6分)
(II)令9x
2-9=0,得x=1或x=-1.(8分)
當(dāng)x變化時(shí),f′(x),f(x)變化狀態(tài)如下表:
x | -2 | (-2,-1) | -1 | (-1,1) | 1 | (1,2) | 2 |
f′(x) | | + | 0 | - | 0 | + | |
f(x) | -1 | ↑ | 11 | ↓ | -1 | ↑ | 11 |
(10分)
從表中可以看出,當(dāng)x=-2或x=1時(shí),函數(shù)f(x)取得最小值-1.
當(dāng)x=-1或x=2時(shí),函數(shù)f(x)取得最大值11.(12分)
分析:(I)求出函數(shù)f(x)的導(dǎo)函數(shù),令導(dǎo)函數(shù)大于0求出x的范圍,寫成區(qū)間即為函數(shù)f(x)的單調(diào)遞增區(qū)間.
(II)列出當(dāng)x變化時(shí),f′(x),f(x)變化狀態(tài)表,求出函數(shù)在[-2,2]上的極值及兩個(gè)端點(diǎn)的函數(shù)值,選出最大值和最小值.
點(diǎn)評(píng):求函數(shù)在閉區(qū)間上的最值問(wèn)題,一般利用導(dǎo)數(shù)求出函數(shù)的極值,再求出函數(shù)在兩個(gè)端點(diǎn)的函數(shù)值,從它們中選出最值.