分析 易知M點在直線y=1上,若設圓x2+y2=1與直線y=1的交點為T,顯然假設存在點N,使得∠OMN=30°,則必有∠OMN≤∠OMT,所以只需∠OMT≥30°即可,借助于三角函數(shù)容易求出x0的范圍.
解答 解:易知M(x0,1)在直線y=1上,設圓x2+y2=1與直線y=1的交點為T,顯然假設存在點N,使得∠OMN=30°,則必有∠OMN≤∠OMT,
所以要是圓上存在點N,使得∠OMN=30°,只需∠OMT≥30°,
因為T(0,1),所以只需在Rt△OMT中,tan∠OMT=$\frac{1}{|{x}_{0}|}$≥tan30°=$\frac{1}{\sqrt{3}}$,
當x0=0時,顯然滿足題意,
故x0∈$[-\sqrt{3},\sqrt{3}]$.
故答案為$[-\sqrt{3},\sqrt{3}]$.
點評 此題重點考查了利用數(shù)形結(jié)合的思想方法解題,關(guān)鍵是弄清楚M點所在的位置,能夠找到∠OMN與∠OMT的大小關(guān)系,從而構(gòu)造出關(guān)于x0的不等式.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=±x | B. | $y=±\sqrt{3}x$ | C. | $y=±\frac{1}{2}x$ | D. | $y=±\frac{{\sqrt{2}}}{2}x$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<b<c | B. | b<a<c | C. | c<b<a | D. | a<c<b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 16π | B. | 32π | C. | 36π | D. | 64π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com