10.若實數(shù)a,b,c滿足loga3<logb3<logc3,則下列關系中不可能成立的( 。
A.a<b<cB.b<a<cC.c<b<aD.a<c<b

分析 由y=logm3(0<m<1)是減函數(shù),y=logm3(m>1)是增函數(shù),利用對數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵實數(shù)a,b,c滿足loga3<logb3<logc3,
y=logm3(0<m<1)是減函數(shù),y=logm3(m>1)是增函數(shù),
∴當a,b,c均大于1時,a>b>c>1;
當a,b,c均小于1時,1>a>b>c>0;
當a,b,c中有1個大于1,兩個小于1時,c>1>a>b>0;
當a,b,c中有1 個小于1,兩個大于1時,b>c>1>a>0.
故選:A.

點評 本題考查三個數(shù)的大小的比較,是基礎題,解題時要認真審題,注意對數(shù)函數(shù)的單調(diào)性的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.為增強市民的節(jié)能環(huán)保意識,鄭州市面向全市征召義務宣傳志愿者,從符合條件的500名志愿者中隨機抽取100名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是:[20,25],[25,30],[30,35],[35,40],[40,45].
(Ⅰ)求圖中x的值,并根據(jù)頻率分布直方圖估計這500名志愿者中年齡在[35,40]歲的人數(shù);
(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場的宣傳活動,再從這10名志愿者中選取3名擔任主要負責人.記這3名志愿者中“年齡低于35歲”的人數(shù)為X,求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.下列5個判斷:
①若f(x)=x2-2ax在[1,+∞)上增函數(shù),則a=1;
②函數(shù)y=2x為R上的單調(diào)遞增的函數(shù);
③函數(shù)y=ln(x2+1)的值域是R;
④函數(shù)y=2|x|的最小值是1;
⑤在同一坐標系中函數(shù)y=2x與y=2-x的圖象關于y軸對稱.
其中正確的是②④⑤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=xlnx,g(x)=ax2-(a+1)x+1(a∈R).
(Ⅰ)當a=0時,設h(x)=f(x)+g(x),求h(x)的單調(diào)區(qū)間;
(Ⅱ)當x≥1時,f(x)≤g(x)+lnx,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.設點M(x0,1),設在圓O:x2+y2=1上存在點N,使得∠OMN=30°,則實數(shù)x0的取值范圍為$[-\sqrt{3},\sqrt{3}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax-2,x≤1}\\{-{a}^{x},x>1}\end{array}\right.$,且a≠1在(0,+∞)上是增函數(shù),則a的取值范圍是( 。
A.(0,$\frac{1}{2}$)B.(0,1)C.$(0,\frac{1}{2}]$D.$[\frac{1}{2},1)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=x2-ax的圖象在點A(1,f(1))處的切線l與直線x+3y+2=0垂直,若數(shù)列{$\frac{1}{f(n)}$}的前n項和為Sn,則S2017的值為$\frac{2017}{2018}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列說法中錯誤的是(  )
A.命題“若x=1,則x2+x-2=0”的否命題是假命題
B.命題“存在一個實數(shù)x,使不等式x2-3x+4<0成立”為真命題
C.命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
D.過點(0,2)與拋物線y2=8x只有一個公共點的直線有3條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若一個圓臺的軸截面如圖所示,則其側面積等于( 。 
A.6B.C.$3\sqrt{5}π$D.$6\sqrt{5}π$

查看答案和解析>>

同步練習冊答案