【題目】已知函數(shù)f(x)=|ax﹣1|﹣(a﹣1)x
(1)當(dāng)a= 時(shí),滿足不等式f(x)>1的x的取值范圍為;若函數(shù)f(x)的圖象與x軸沒有交點(diǎn),則實(shí)數(shù)a的取值范圍為 .
【答案】
(1)(2,+∞);[ ,1)
【解析】解:a= 時(shí),f(x)=| x﹣1|+ x= , ∵f(x)>1,
∴ ,
解得x>2,
故x的取值范圍為(2,+∞);函數(shù)f(x)的圖象與x軸沒有交點(diǎn),
①當(dāng)a≥1時(shí),f(x)=|ax﹣1|與g(x)=(a﹣1)x的圖象:
兩函數(shù)的圖象恒有交點(diǎn),
②當(dāng)0<a<1時(shí),f(x)=|ax﹣1|與g(x)=(a﹣1)x的圖象:
要使兩個(gè)圖象無交點(diǎn),斜率滿足:a﹣1≥﹣a,
∴a≥ ,故 ≤≤a<1
③當(dāng)a≤0時(shí),f(x)=|ax﹣1|與g(x)=(a﹣1)x的圖象:
兩函數(shù)的圖象恒有交點(diǎn),
綜上①②③知: ≤a<1
所以答案是:(2,+∞),[ ,1)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線y=1+ 與直線kx﹣y﹣2k+5=0有兩個(gè)交點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若曲線與直線只有一個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)P(x0 , h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時(shí),若 >0在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對(duì)稱點(diǎn)”,則f(x)=x2﹣6x+4lnx的“類對(duì)稱點(diǎn)”的橫坐標(biāo)是( )
A.1
B.
C.e
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花店每天以每枝元的價(jià)格從農(nóng)場(chǎng)購進(jìn)若干枝玫瑰花,然后以每枝元的價(jià)格出售.如果當(dāng)天賣不完,剩下的玫瑰花做垃圾處理.
(1)若花店一天購進(jìn)枝玫瑰花,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:枝, )的函數(shù)解析式.
(2)花店記錄了天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量 | |||||||
頻數(shù) |
假設(shè)花店在這天內(nèi)每天購進(jìn)枝玫瑰花,求這天的日利潤(單位:元)的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)镽,若存在常數(shù)T≠0,使得f(x)=Tf(x+T)對(duì)任意的x∈R成立,則稱函數(shù)f(x)是Ω函數(shù). (Ⅰ)判斷函數(shù)f(x)=x,g(x)=sinπx是否是Ω函數(shù);(只需寫出結(jié)論)
(Ⅱ)說明:請(qǐng)?jiān)冢╥)、(ii)問中選擇一問解答即可,兩問都作答的按選擇(i)計(jì)分
(i)求證:若函數(shù)f(x)是Ω函數(shù),且f(x)是偶函數(shù),則f(x)是周期函數(shù);
(ii)求證:若函數(shù)f(x)是Ω函數(shù),且f(x)是奇函數(shù),則f(x)是周期函數(shù);
(Ⅲ)求證:當(dāng)a>1時(shí),函數(shù)f(x)=ax一定是Ω函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某公司生產(chǎn)某產(chǎn)品的年固定成本為100萬元,每生產(chǎn)1千件需另投入27萬元,設(shè)該公司一年內(nèi)生產(chǎn)該產(chǎn)品千件并全部銷售完,每千件的銷售收入為萬元,且.
⑴ 寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
⑵ 當(dāng)年產(chǎn)量為多少千件時(shí),該公司在這一產(chǎn)品的生產(chǎn)中所獲年利潤最大?(注:年利潤=年銷售收入年總成本).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,則不等式f(x)g(x)<0的解集是( )
A.(﹣3,0)∪(3,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣∞,﹣3)∪(0,3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com