5.已知等差數(shù)列{an}的前n項和為Sn,若$\overrightarrow{OB}$=a7$\overrightarrow{OA}$+a2006$\overrightarrow{OC}$,且A、B、C三點共線(該直線不過點O),則S2012等于(  )
A.1006B.2012C.22012D.2-2012

分析 根據(jù)平面向量的基本定理得出a7+a2006=1,再利用等差數(shù)列的性質(zhì)與前n項和公式,即可求出S2012的值.

解答 解:∵$\overrightarrow{OB}$=a7$\overrightarrow{OA}$+a2006$\overrightarrow{OC}$,且A、B、C三點共線(該直線不過點O),
∴a7+a2006=1;
∵數(shù)列{an}是等差數(shù)列,
∴a1+a2012=a7+a2006;
∴S2012=$\frac{2012×{(a}_{1}{+a}_{2012})}{2}$=1006.
故選:A.

點評 本題考查了平面向量的基本定理與等差數(shù)列的性質(zhì)、前n項和公式的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.某縣電視臺決定于2015年元旦前夕舉辦“弘揚核心價值觀,激情唱響中國夢”全縣歌手大獎賽,比賽分初賽演唱部分和決賽問答題部分,各位選手的演唱部分成績頻率分布直方分布圖(1)如圖:已知某工廠的6名參賽人員的演唱成績得分(滿分10分)如莖葉圖(2)(莖上的數(shù)字為整數(shù)部分,葉上的數(shù)字為小數(shù)部分).
(1)根據(jù)頻率分布直方分布圖和莖葉圖評估某工廠6名參賽人員的演唱部分的平均水平是否高于全部參賽人員的平均水平?(計算數(shù)據(jù)精確到小數(shù)點后三位數(shù))
(2)已知初賽9.0分以上的選手才有資格參加決賽,問答題部分為5道題,選手對其依次回答,累計答對3題或答錯3題即結(jié)束比賽,答對3題者直接獲獎,已知該工廠參賽人員甲進入了決賽且答對每道題的概率為這6位中任意抽取2位演唱得分分差大于0.5的概率,且各題對錯互不影響,設甲決賽獲獎答題的個數(shù)為X,求X的分布列及X的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若集合A={1,sinθ},B={$\frac{1}{2}$,2},則”θ=$\frac{5π}{6}$”是”A∩B={$\frac{1}{2}$}”的充分不必要.條件.(請在“充要、充分不必要、必要不充分、既不充分也不必要”中選擇一個填空).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積等于( 。
A.16cm3B.20cm3C.24cm3D.28cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在△ABC中,角A,B,C的對邊分別是a,b,c,若c-acosB=(2a-b)cosA,則△ABC的形狀是等腰或直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,四棱錐P-ABCD的底面ABCD是菱形,∠DAB=60°,E是AD的中點,PA=PD.
(I)求證:平面PBE⊥平面ABCD;
(Ⅱ)若平面PBC⊥平面ABCD,PB=AB,求二面角D-PC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.有10個零件,其中6個一等品,4個二等品,若從10個零件中任意取3個,那么至少有1個一等品的不同取法有116種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知圓C:x2+y2-2x=0,在圓C中任取一點P,則點P的橫坐標小于1的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{π}$D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知定義在R上的函數(shù)f(x)的圖象關于y軸對稱,且滿足f(x+2)=f(-x),若當x∈[0,1]時,f(x)=3x-1,則f(log${\;}_{\frac{1}{3}}$10)的值為$\frac{10}{27}$.

查看答案和解析>>

同步練習冊答案