20.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若c-acosB=(2a-b)cosA,則△ABC的形狀是等腰或直角三角形.

分析 由正弦定理將已知化簡(jiǎn)為三角函數(shù)關(guān)系式,可得cosA(sinB-sinA)=0,從而可得A=$\frac{π}{2}$或B=A或B=π-A(舍去),即可判斷三角形的形狀.

解答 解:在△ABC中,∵c-acosB=(2a-b)cosA,C=π-(A+B),
∴由正弦定理得:sinC-sinAcosB=2sinAcosA-sinBcosA,
∴sinAcosB+cosAsinB-sinAcosB=2sinAcosA-sinBcosA,
∴cosA(sinB-sinA)=0,
∵cosA=0,或sinB=sinA,
∴A=$\frac{π}{2}$或B=A或B=π-A(舍去),
可得△ABC的形狀是等腰或直角三角形.
故答案為:等腰或直角三角形.

點(diǎn)評(píng) 本題考查三角形的形狀判斷,著重考查正弦定理的應(yīng)用與化簡(jiǎn)運(yùn)算的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)函數(shù)f(x)=$\frac{ax}{x+1}$(a≠0),若${∫}_{0}^{1}$f(x)dx=1-ln2,則a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.過(guò)點(diǎn)(1,2),且在兩坐標(biāo)軸上的截距相等的直線有2條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知數(shù)列{an}滿足3${\;}^{{a}_{n+1}}$=9•3${\;}^{{a}_{n}}$,(n∈N*)且a2+a4+a6=9,則log${\;}_{\frac{1}{3}}$(a5+a7+a9)=( 。
A.-$\frac{1}{3}$B.3C.-3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若ax-1<x(a>0,a≠1)對(duì)任意的x∈(0,1)都成立,則實(shí)數(shù)a的取值范圍為(  )
A.(1,2]B.(0,1)∪(1,2)C.(0,1)∪(1,2]D.(2,+∞)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若$\overrightarrow{OB}$=a7$\overrightarrow{OA}$+a2006$\overrightarrow{OC}$,且A、B、C三點(diǎn)共線(該直線不過(guò)點(diǎn)O),則S2012等于(  )
A.1006B.2012C.22012D.2-2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖是某幾何體的三視圖,其中正視圖是正方形,側(cè)視圖是矩形,俯視圖是半徑為1的半圓,則該幾何體的外接球的體積等于( 。
A.$\frac{{2\sqrt{2}}}{3}π$B.$\frac{{4\sqrt{2}}}{3}π$C.$\frac{{8\sqrt{2}}}{3}π$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.(理)如圖,直角三角形紙片ABC中,AB=3,AC=4,D為斜邊BC中點(diǎn),第1次將紙片折疊,使點(diǎn)A與點(diǎn)D重合,折痕與AD交與點(diǎn)P1;設(shè)P1D的中點(diǎn)為D1,第2次將紙片折疊,使點(diǎn)A與點(diǎn)D1重合,折痕與AD交于點(diǎn)P2;設(shè)P2D1的中點(diǎn)為D2,第3次將紙片折疊,使點(diǎn)A與點(diǎn)D2重合,折痕與AD交于點(diǎn)P3;…;設(shè)Pn-1Dn-2的中點(diǎn)為Dn-1,第n次將紙片折疊,使點(diǎn)A與點(diǎn)Dn-1重合,折痕與AD交于點(diǎn)Pn(n>2),則AP6的長(zhǎng)為( 。
A.$\frac{5×3^5}{2^{12}}$B.$\frac{3^6}{5×2^9}$C.$\frac{5×3^6}{2^{14}}$D.$\frac{3^7}{5×2^{11}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,已知橢圓Г:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)點(diǎn)F1,F(xiàn)2分別作兩條平行直線AB,CD交橢圓Г于點(diǎn)A、B、C、D.
(Ⅰ)求證:|AB|=|CD|;
(Ⅱ)求四邊形ABCD面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案