平行六面體ABCD-A1B1C1D1中,設(shè)
AC1
=x
AB
+2y
BC
+3z
CC1
,則x+y+z=(  )
A、1
B、
11
6
C、
5
6
D、
7
6
考點(diǎn):平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:利用空間向量平行六面體法則、共面向量基本定理即可得出.
解答: 解:由平行六面體ABCD-A1B1C1D1,可得
AC1
=
AB
+
AD
+
AA1
,
AC1
=x
AB
+2y
BC
+3z
CC1
,
∴x=1,2y=1,3z=1,
則x+y+z=1+
1
2
+
1
3
=
11
6

故選:B.
點(diǎn)評(píng):本題考查了空間向量平行六面體法則、共面向量基本定理,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為冪函數(shù),且過(guò)點(diǎn)(2,
2
).
(1)求f(x)的解析式;
(2)若方程f2(x)-af(x)-a+1=0有兩個(gè)不相等實(shí)數(shù)根,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正四面體ABCD中,E為AD的中點(diǎn),則異面直線AB與CE所成角的余弦值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明:
1+cscα+cotα
1+cscα-cotα
=cscα+cotα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方體ABCD-A1B1C1D1中,已知M是棱AB的中點(diǎn),求C1M與平面BCD1A1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC的外接圓的圓心為O,若
OH
=
OA
+
OB
+
OC
,則H是△ABC的(  )
A、外心B、內(nèi)心C、重心D、垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖一是火力發(fā)電廠煙囪示意圖.它是雙曲線繞其一條對(duì)稱軸旋轉(zhuǎn)一周形成的幾何體,煙囪最細(xì)處的直徑為10m,最下端的直徑為12m,最細(xì)處離地面6m,煙囪高14m,試求該煙囪占有空間的大。ň_到0.1m3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線x2-2y2=4的右焦點(diǎn)到漸近線的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,右焦點(diǎn)到直線y=x的距離為
3

(Ⅰ)求橢圓E的方程;
(Ⅱ)已知點(diǎn)M(2,1),斜率為
1
2
的直線l交橢圓E于兩個(gè)不同點(diǎn)A,B,設(shè)直線MA與MB的斜率分別為k1,k2
①若直線l過(guò)橢圓的左頂點(diǎn),求k1,k2的值;    
②試猜測(cè)k1,k2的關(guān)系,并給出你的證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案