【題目】某手機生產(chǎn)企業(yè)為了對研發(fā)的一批最新款手機進(jìn)行合理定價,將該款手機按事先擬定的價格進(jìn)行試銷,得到單價(單位:千元)與銷量(單位:百件)的關(guān)系如下表所示:

單價(千元)

1

1.5

2

2.5

3

銷量(百件)

10

8

7

6

已知.

(Ⅰ)若變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(千元)的線性回歸方程;

(Ⅱ)用(Ⅰ)中所求的線性回歸方程得到與對應(yīng)的產(chǎn)品銷量的估計值,當(dāng)銷售數(shù)據(jù)對應(yīng)的殘差滿足時,則稱為一個好數(shù)據(jù),現(xiàn)從5個銷售數(shù)據(jù)中任取3個,求其中好數(shù)據(jù)的個數(shù)的分布列和數(shù)學(xué)期望.

參考公式:,.

【答案】(Ⅰ)(Ⅱ)見解析,

【解析】

(Ⅰ)由可求出,求出,再分別計算出,代入公式可求出,由求出,從而得到線性回歸方程;

(Ⅱ)利用的值判斷共有三個好數(shù)據(jù),再計算對應(yīng)的概率值,列出分布列,計算數(shù)學(xué)期望即可.

(Ⅰ)由,可得,

,

,

,

代入得,

,

∴回歸直線方程為.

(Ⅱ),

,

,

,

共有3好數(shù)據(jù)”.

,

,,

的分布列為:

1

2

3

的期望值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面 平面,,, .

(1)證明

(2)設(shè)點在線段上,且,若的面積為,求四棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周髀算經(jīng)》中給出了勾股定理的絕妙證明.如圖是趙爽弦圖及注文.弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成朱色及黃色,其面積稱為朱實、黃實.×+(股-勾)2=4×朱實+黃實=弦實,化簡得勾2+2=2.若圖中勾股形的勾股比為,向弦圖內(nèi)隨機拋擲100顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù):

A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),將曲線上各點縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)得到曲線,以坐標(biāo)原點為極點,軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)寫出的極坐標(biāo)方程與直線的直角坐標(biāo)方程;

2)曲線上是否存在不同的兩點,(以上兩點坐標(biāo)均為極坐標(biāo),,),使點、的距離都為3?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰梯形中,,,,的中點.現(xiàn)分別沿,折起,點折至點,點折至點,使得平面平面,平面平面,連接,如圖2.

(Ⅰ)若、分別為、的中點,求證:平面平面;

(Ⅱ)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年寒假是特殊的寒假,因為疫情全體學(xué)生只能在家進(jìn)行網(wǎng)上在線學(xué)習(xí),為了研究學(xué)生在網(wǎng)上學(xué)習(xí)的情況,某學(xué)校在網(wǎng)上隨機抽取120名學(xué)生對線上教育進(jìn)行調(diào)查,其中男生與女生的人數(shù)之比為1113,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.

1)完成列聯(lián)表,并回答能否有99%的把握認(rèn)為對線上教育是否滿意與性別有關(guān);

滿意

不滿意

總計

男生

女生

合計

120

2)從被調(diào)查中對線上教育滿意的學(xué)生中,利用分層抽樣抽取8名學(xué)生,再在8名學(xué)生中抽取3名學(xué)生,作線上學(xué)習(xí)的經(jīng)驗介紹,其中抽取男生的個數(shù)為,求出的分布列及期望值.

參考公式:附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

0.706

3.841

5.024

6.635

7.879

10828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)函數(shù)內(nèi)有且只有一個極值點,求實數(shù)的取值范圍;

2)若函數(shù)有兩個不同的極值點,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象與軸相切.

1)求的值.

2)求證:

3)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) ,).

1)若展開式中第5項與第7項的系數(shù)之比為38,求k的值;

2)設(shè)),且各項系數(shù),,,,互不相同.現(xiàn)把這個不同系數(shù)隨機排成一個三角形數(shù)陣:第11個數(shù),第22個數(shù),,第nn個數(shù).設(shè)是第i列中的最小數(shù),其中,且i.記的概率為.求證:

查看答案和解析>>

同步練習(xí)冊答案