【題目】某手機生產(chǎn)企業(yè)為了對研發(fā)的一批最新款手機進(jìn)行合理定價,將該款手機按事先擬定的價格進(jìn)行試銷,得到單價(單位:千元)與銷量(單位:百件)的關(guān)系如下表所示:
單價(千元) | 1 | 1.5 | 2 | 2.5 | 3 |
銷量(百件) | 10 | 8 | 7 | 6 |
已知.
(Ⅰ)若變量,具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(千元)的線性回歸方程;
(Ⅱ)用(Ⅰ)中所求的線性回歸方程得到與對應(yīng)的產(chǎn)品銷量的估計值,當(dāng)銷售數(shù)據(jù)對應(yīng)的殘差滿足時,則稱為一個“好數(shù)據(jù)”,現(xiàn)從5個銷售數(shù)據(jù)中任取3個,求其中“好數(shù)據(jù)”的個數(shù)的分布列和數(shù)學(xué)期望.
參考公式:,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周髀算經(jīng)》中給出了勾股定理的絕妙證明.如圖是趙爽弦圖及注文.弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成朱色及黃色,其面積稱為朱實、黃實.由2×勾×股+(股-勾)2=4×朱實+黃實=弦實,化簡得勾2+股2=弦2.若圖中勾股形的勾股比為,向弦圖內(nèi)隨機拋擲100顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù):,)
A.2B.4C.6D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)得到曲線,以坐標(biāo)原點為極點,軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)寫出的極坐標(biāo)方程與直線的直角坐標(biāo)方程;
(2)曲線上是否存在不同的兩點,(以上兩點坐標(biāo)均為極坐標(biāo),,),使點、到的距離都為3?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰梯形中,,,,為的中點.現(xiàn)分別沿,將和折起,點折至點,點折至點,使得平面平面,平面平面,連接,如圖2.
(Ⅰ)若、分別為、的中點,求證:平面平面;
(Ⅱ)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年寒假是特殊的寒假,因為疫情全體學(xué)生只能在家進(jìn)行網(wǎng)上在線學(xué)習(xí),為了研究學(xué)生在網(wǎng)上學(xué)習(xí)的情況,某學(xué)校在網(wǎng)上隨機抽取120名學(xué)生對線上教育進(jìn)行調(diào)查,其中男生與女生的人數(shù)之比為11∶13,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.
(1)完成列聯(lián)表,并回答能否有99%的把握認(rèn)為對“線上教育是否滿意與性別有關(guān)”;
滿意 | 不滿意 | 總計 | |
男生 | |||
女生 | |||
合計 | 120 |
(2)從被調(diào)查中對線上教育滿意的學(xué)生中,利用分層抽樣抽取8名學(xué)生,再在8名學(xué)生中抽取3名學(xué)生,作線上學(xué)習(xí)的經(jīng)驗介紹,其中抽取男生的個數(shù)為,求出的分布列及期望值.
參考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 0.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)函數(shù)在內(nèi)有且只有一個極值點,求實數(shù)的取值范圍;
(2)若函數(shù)有兩個不同的極值點,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) (,).
(1)若展開式中第5項與第7項的系數(shù)之比為3∶8,求k的值;
(2)設(shè)(),且各項系數(shù),,,…,互不相同.現(xiàn)把這個不同系數(shù)隨機排成一個三角形數(shù)陣:第1列1個數(shù),第2列2個數(shù),…,第n列n個數(shù).設(shè)是第i列中的最小數(shù),其中,且i,.記的概率為.求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com