17.已知x1,x2是一元二次方程$\frac{1}{2}{x^2}-x-3=0$的兩個實數(shù)根,則$x_1^2+x_2^2$=16.

分析 由已知結(jié)合韋達(dá)定理可得:x1+x2=2,x1•x2=-6.則$x_1^2+x_2^2$=(x1+x22-2x1•x2,代入可得答案.

解答 解:∵x1,x2是一元二次方程$\frac{1}{2}{x^2}-x-3=0$的兩個實數(shù)根,
∴x1+x2=2,x1•x2=-6.
∴$x_1^2+x_2^2$=(x1+x22-2x1•x2=16,
故答案為:16

點評 本題考查的知識點是一元二次方程根與系數(shù)的關(guān)系,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知全集U={0,1,2,3,4,5,6,7,8,9},集合$A=\{x|\sqrt{4x-{x^2}}>0,x∈N\}$,則集合∁UA中的元素個數(shù)為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知集合A={x|log2x<8},B={x|$\frac{x+2}{x-4}$<0},C={x|a<x<a+1}.
(1)求集合A∩B;
(2)若B∪C=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若m,n∈N*則a>b是(am-bm)•(an-bn)>0成立的( 。l件.
A.充分非必要B.必要非充分
C.充分必要D.既非充分又非必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如果$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$是二元一次方程組$\left\{\begin{array}{l}{ax+by=1}\\{bx+ay=2}\end{array}\right.$的解,那么a,b的值是(  )
A.$\left\{\begin{array}{l}{a=-1}\\{b=0}\end{array}\right.$B.$\left\{\begin{array}{l}{a=1}\\{b=0}\end{array}\right.$C.$\left\{\begin{array}{l}{a=0}\\{b=1}\end{array}\right.$D.$\left\{\begin{array}{l}{a=0}\\{b=-1}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)在等差數(shù)列{an}中,S10=50,S20=300,求通項an
(2)已知正數(shù)等比數(shù)列{an}的前n項和Sn,且S3=a2+10a1,a5=81,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在多面體ABCDEF中,底面ABCD是邊長為2的菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中點.
(I)求證:BH∥平面AEF;
(Ⅱ)求EH與平面AFE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某城市A計劃每天從蔬菜基地B處給本市供應(yīng)蔬菜,為此,準(zhǔn)備從主干道AD的C處(不在端點A、D處)做一條道路CB,主干道AD的長為60千米,設(shè)計路線如圖所示,測得蔬菜基地B在城市A的東偏北60°處,AB長為60千米,設(shè)∠BCD=θ,運輸汽車在主干道AD上的平均車速為60千米/小時,在道路CB上的平均車速為20千米/小時.
(1)求運輸汽車從城市A到蔬菜基地B處所用的時間t關(guān)于θ的函數(shù)關(guān)系式t(θ),并指出其定義域;
(2)求運輸汽車從城市A到蔬菜基地B處所用的時間t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知方程$\frac{{x}^{2}}{k-5}$+$\frac{{y}^{2}}{3+k}$=-1表示橢圓,求k的取值范圍.(-∞,-3).

查看答案和解析>>

同步練習(xí)冊答案