【題目】某同學從區(qū)間[﹣1,1]隨機抽取2n個數(shù)x1 , x2 , …,xn , y1 , y2 , …,yn , 構(gòu)成n個數(shù)對(x1 , y1),(x2 , y2),…(xn , yn),該同學用隨機模擬的方法估計n個數(shù)對中兩數(shù)的平方和小于1(即落在以原點為圓心,1為半徑的圓內(nèi))的個數(shù),則滿足上述條件的數(shù)對約有個.

【答案】
【解析】解:由題意,兩數(shù)的平方和小于1,對應(yīng)的區(qū)域的面積為 π12 , 從區(qū)間[0,1]隨機抽取2n個數(shù)x1 , x2 , …,xn , y1 , y2 , …,yn , 構(gòu)成n個數(shù)對(x1 , y1),(x2 , y2),…,(xn , yn),對應(yīng)的區(qū)域的面積為12 , ∴ ,∴m=
所以答案是

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】定義方程f(x)=f′(x)的實數(shù)根x0叫做函數(shù)f(x)的“異駐點”.若函數(shù)g(x)=2016x,h(x)=ln(x+1),φ(x)=x3﹣1的“異駐點”分別為α,β,γ,則α,β,γ的大小關(guān)系為(
A.α>β>γ
B.β>α>γ
C.β>γ>α
D.γ>α>β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},分別求適合下列條件的a的值.
(1)9∈(A∩B);
(2){9}=A∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+φ) 在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如表:

ωx+φ

0

π

x

f(x)=Asin(ωx+φ)

0

5

﹣5

0


(1)請將如表數(shù)據(jù)補充完整,并直接寫出函數(shù)f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向左平移 個單位長度,得到函數(shù)y=g(x)的圖象,求y=g(x)的圖象離原點O最近的對稱中心.
(3)求當 時,函數(shù)y=g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】秦九韶是我國南宋時期的數(shù)學家,他所著的《九章算術(shù)》是我國古代數(shù)學名著,體現(xiàn)了我國古代數(shù)學的輝煌成就.其中的“更相減損術(shù)”蘊含了豐富的思想,根據(jù)“更相減損術(shù)”的思想設(shè)計了如圖所示的程序框圖,若輸入的a=15,輸出的a=3,則輸入的b可能的值為(
A.30
B.18
C.5
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

已知函數(shù),函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若不等式上恒成立,求實數(shù)a的取值范圍;

(Ⅲ)若,求證:不等式: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某個不透明的盒子里有5枚質(zhì)地均勻、大小相等的銅幣,銅幣有兩種顏色,一種為黃色,一種為綠色.其中黃色銅幣兩枚,標號分別為1,2,綠色銅幣三枚,標號分別為1,2,3.
(1)從該盒子中任取2枚,試列出一次實驗所有可能出現(xiàn)的結(jié)果;
(2)從該盒子中任取2枚,求這兩枚銅幣顏色不同且標號之和大于3的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p:x∈R,2x>m(x2+1),q:x0∈R,x02+2x0﹣m﹣1=0,
(1)若q是真命題,求m的范圍;
(2)若p∧(¬q)為真,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】觀察下列各不等式:
,
,
,


(1)由上述不等式,歸納出一個與正整數(shù) 有關(guān)的一般性結(jié)論;
(2)用數(shù)學歸納法證明你得到的結(jié)論.

查看答案和解析>>

同步練習冊答案