【題目】某個不透明的盒子里有5枚質(zhì)地均勻、大小相等的銅幣,銅幣有兩種顏色,一種為黃色,一種為綠色.其中黃色銅幣兩枚,標(biāo)號分別為1,2,綠色銅幣三枚,標(biāo)號分別為1,2,3.
(1)從該盒子中任取2枚,試列出一次實驗所有可能出現(xiàn)的結(jié)果;
(2)從該盒子中任取2枚,求這兩枚銅幣顏色不同且標(biāo)號之和大于3的概率.

【答案】
(1)解:一次試驗的所有可能結(jié)果為:

(黃1,黃2),(黃1,綠1),(黃1,綠2),(黃1,綠3),(黃2,綠1),

(黃2,綠2),(黃2,綠3),(綠1,綠2),(綠1,綠3),(綠2,綠3),

共有10種.


(2)解:從該盒子中任取2枚,這兩枚銅幣顏色不同且標(biāo)號之和大于3包含的基本事件有:

(黃2,綠2),(黃2,綠3),(黃1,綠3),共3種,

∴這兩枚銅幣顏色不同且標(biāo)號之和大于3的概率P=


【解析】(1)利用列舉法能列出一次實驗所有可能出現(xiàn)的結(jié)果.(2)從該盒子中任取2枚,列舉法這兩枚銅幣顏色不同且標(biāo)號之和大于3包含的基本事件,由此能求出這兩枚銅幣顏色不同且標(biāo)號之和大于3的概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第二十九屆夏季奧林匹克運動會將于2008年8月8日在北京舉行,若集合A={參加北京奧運會比賽的運動員},集合B={參加北京奧運會比賽的男運動員}.集合C={參加北京奧運會比賽的女運動員},則下列關(guān)系正確的是(  )
A.AB
B.BC
C.A∩B=C
D.B∪C=A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知。

(1)曲線在點處的切線的斜率小于,求的單調(diào)區(qū)間;

(2)對任意的,函數(shù)在區(qū)間上為增函數(shù),求 的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)從區(qū)間[﹣1,1]隨機抽取2n個數(shù)x1 , x2 , …,xn , y1 , y2 , …,yn , 構(gòu)成n個數(shù)對(x1 , y1),(x2 , y2),…(xn , yn),該同學(xué)用隨機模擬的方法估計n個數(shù)對中兩數(shù)的平方和小于1(即落在以原點為圓心,1為半徑的圓內(nèi))的個數(shù),則滿足上述條件的數(shù)對約有個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

在直角坐標(biāo)系中,已知,若。

(Ⅰ)求動點P的軌跡的方程;

(Ⅱ)過點M的直線與(1)中軌跡相交于點A、B,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知曲線C1的參數(shù)方程為 (φ為參數(shù)).以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4 cosθ.
(1)求C1與C2交點的直角坐標(biāo);
(2)已知曲線C3的參數(shù)方程為 (0≤α<π,t為參數(shù),且t≠0),C3與C1相交于點P,C2與C3相交于點Q,且|PQ|=8,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蛋糕店出售一種蛋糕,這種蛋糕的保質(zhì)期很短,必須當(dāng)天賣掉,否則容易變質(zhì),該蛋糕店每天以每塊16元的成本價格制作這種蛋糕若干塊,然后以每塊26元的價格出售,如果當(dāng)天賣不完,剩下的蛋糕只能以每塊6元低價出售.蛋糕店記錄了100天該種蛋糕的日需求量n(單位:塊,n∈N*)整理得如圖:
(1)若該蛋糕店某一天制作19塊蛋糕,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n的函數(shù)解析式;
(2)若要求出售“出售的蛋糕塊數(shù)不小于n”的頻率不小于0.4,求n的最大值.
(3)若該蛋糕店這100天每天都制作19塊蛋糕,試計算這100天蛋糕店所獲利潤的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校制定學(xué)校發(fā)展規(guī)劃時,對現(xiàn)有教師進行年齡狀況和接受教育程度(學(xué)歷)的調(diào)查,其結(jié)果(人數(shù)分布)如表:

學(xué)歷

35歲以下

35至50歲

50歲以上

本科

80

30

20

研究生

x

20

y

(Ⅰ)用分層抽樣的方法在35至50歲年齡段的教師中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2人,求至少有l(wèi)人的學(xué)歷為研究生的概率;
(Ⅱ)在該校教師中按年齡狀況用分層抽樣的方法抽取N個人,其中35歲以下48人,50歲以上10人,再從這N個人中隨機抽取l人,此人的年齡為50歲以上的概率為 ,求x、y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集為R,函數(shù)f(x)= 的定義域為M,則RM=(
A.(﹣∞,﹣1)
B.[1,+∞)
C.(1,+∞)
D.(﹣∞,1]

查看答案和解析>>

同步練習(xí)冊答案