【題目】已知點,橢圓的離心率為是橢圓的右焦點,直線的斜率為,為坐標原點.

(1)求的方程;

(2)設過點的動直線相交于兩點,問:是否存在直線,使以為直徑的圓經過原點,若存在,求出對應直線的方程,若不存在,請說明理由.

【答案】1;(2.

【解析】試題分析:(1)設出,由直線的斜率為求得,結合離心率求得,再由隱含條件求得,則橢圓方程可求;(2)當軸時,不合題意;當直線斜率存在時,設直線代入橢圓方程化簡,由判別式大于求得的范圍,若存在以為直徑的圓經過點原點,求出,即,得到,符合,進一步求出值,則直線方程可求得.

試題解析:(1)設,由條件知, ,得.

,所以,

.

的方程為.

(2)當垂直于軸時不合題意,故設.

代入,得

,即時,

,,

所以

若存在以為直徑的圓經過點原點,則

,即,

所以,符合,所以存在,符合題意,

此時.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的一個短軸端點及兩個焦點構成的三角形的面積為,圓C方程為.

(1)求橢圓及圓C的方程;

(2)過原點O作直線l與圓C交于A,B兩點,若,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為, ,點在橢圓上.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)是否存在斜率為2的直線,使得當直線與橢圓有兩個不同交點時,能在直線上找到一點,在橢圓上找到一點,滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本題滿分14本題共有2個小題,第1小題滿分6分,第2小題滿分8

沙漏是古代的一種時裝置,它由兩個形狀完全相同的容器和一個狹窄的連接管道組成,開始時細沙全部在上部容器中,細通過連接管道全部到下部容器所需要的時間稱為該沙漏的一個沙時。如圖,某沙漏由上下兩個圓錐組成圓錐的底面直徑和高均為8cm,細沙全部在上部時高度為圓錐高度的細管長忽略不

1如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個沙時為多少秒精確1秒?

2全部漏入下部,恰好堆成一蓋沙漏底的圓錐形沙求此錐形高度精確0.1cm

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校100名學生期中考試數(shù)學成績的頻率分布直方圖如圖,其中成績分組區(qū)間如下:

組號

第一組

第二組

第三組

第四組

第五組

分組

[50,60

[60,70

[7080

[80,90

[90100]

1)求圖中a的值;

2)根據(jù)頻率分布直方圖,估計這100名學生期中考試數(shù)學成績的平均分;

3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數(shù)不低于90分的概率?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線).

(1)證明:直線過定點;

(2)若直線不經過第四象限,求的取值范圍;

(3)若直線軸負半軸于,交軸正半軸于,△的面積為為坐標原點),求的最小值,并求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】條件;條件:直線與圓相切,則的( )

A. 充分必要條件 B. 必要不充分條件

C. 充分不必要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù).以原點為極點,軸正半軸為極軸建立極坐標系,圓的方程為.

寫出直線的普通方程和圓的直角坐標方程;

若點的直角坐標為,圓與直線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】空間中任意放置的棱長為2的正四面體.下列命題正確的是_________.(寫出所有正確的命題的編號)

①正四面體的主視圖面積可能是;

②正四面體的主視圖面積可能是;

③正四面體的主視圖面積可能是;

④正四面體的主視圖面積可能是2

⑤正四面體的主視圖面積可能是.

查看答案和解析>>

同步練習冊答案