【題目】已知直線).

(1)證明:直線過定點(diǎn);

(2)若直線不經(jīng)過第四象限,求的取值范圍;

(3)若直線軸負(fù)半軸于,交軸正半軸于,△的面積為為坐標(biāo)原點(diǎn)),求的最小值,并求此時(shí)直線的方程.

【答案】(1)無論k取何值,直線過定點(diǎn)(-2,1);(2);(3)△AOB的面積的最小值為4,此時(shí)直線l的方程為x-y+1+1=0.

【解析】試題分析】(1)將直線方程變形為含參數(shù)的項(xiàng)與 不含參數(shù)的項(xiàng),借助條件建立方程組,即可求出定點(diǎn)坐標(biāo);(2)借助(1)的結(jié)論,并數(shù)形結(jié)合建立關(guān)于的不等式組求解;(3)先求出兩點(diǎn)的坐標(biāo),再建立的面積關(guān)于斜率的函數(shù),運(yùn)用基本不等式求最小值,并借助函數(shù)取得最小值時(shí)的條件求出直線的方程:

(1)證明:由已知得: k(x+2)+(1-y)=0,

x+2=0 且 1-y=0,得: x=-2, y=1

∴無論k取何值,直線過定點(diǎn)(-2,1)

(2)直線方程可化為,

當(dāng)時(shí),要使直線不經(jīng)過第四象限,則,解得;

當(dāng)時(shí),直線為,符合題意.

綜上:的取值范圍是。

(3)令y=0得:A點(diǎn)坐標(biāo)為,令x=0得:B點(diǎn)坐標(biāo)為(0,2k+1)(k>0),

∴S△AOB|2k+1|=(2k+1)=(4+4)=4

當(dāng)且僅當(dāng)4k=,即k=時(shí)取等號(hào).

即△AOB的面積的最小值為4,此時(shí)直線l的方程為x-y+1+1=0,

即 x-2y+4=0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為,.

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若對(duì)滿足的一切的值,都有,求實(shí)數(shù)的取值范圍;

(3)若對(duì)一切恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)當(dāng)時(shí),證明:函數(shù)不是奇函數(shù);

2)判斷函數(shù)的單調(diào)性,并利用函數(shù)單調(diào)性的定義給出證明;

3)若是奇函數(shù),且時(shí)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)也為拋物線的焦點(diǎn),過點(diǎn)的直線交拋物線兩點(diǎn).

(Ⅰ)若點(diǎn)滿足,求直線的方程;

(Ⅱ)為直線上任意一點(diǎn),過點(diǎn)的垂線交橢圓兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)為平面上的動(dòng)點(diǎn),且過點(diǎn)的垂線,垂足為,滿足:

()求動(dòng)點(diǎn)的軌跡的方程;

()在軌跡上求一點(diǎn),使得到直線的距離最短,并求出最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),解不等式

(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C的標(biāo)準(zhǔn)方程是

)求它的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;

)直線過已知拋物線C的焦點(diǎn)且傾斜角為45°,且與拋物線的交點(diǎn)為A、B,求線段AB的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一批產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤(rùn)12萬元,該公司通過設(shè)備升級(jí),生產(chǎn)這批產(chǎn)品所需原材料減少了噸,且每噸原材料創(chuàng)造的利潤(rùn)提高;若將少用的噸原材料全部用于生產(chǎn)公司新開發(fā)的產(chǎn)品,每噸原材料創(chuàng)造的利潤(rùn)為萬元

1若設(shè)備升級(jí)后生產(chǎn)這批產(chǎn)品的利潤(rùn)不低于原來生產(chǎn)該批產(chǎn)品的利潤(rùn),求的取值范圍;

2若生產(chǎn)這批產(chǎn)品的利潤(rùn)始終不高于設(shè)備升級(jí)后生產(chǎn)這批產(chǎn)品的利潤(rùn),求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線

(1)的方程為普通方程,并說明它們分別表示什么曲線;

(2)上的點(diǎn)P對(duì)應(yīng)的參數(shù)為,Q為上的動(dòng)點(diǎn),求PQ的中點(diǎn)M到直線

查看答案和解析>>

同步練習(xí)冊(cè)答案