已知橢圓的標(biāo)準(zhǔn)方程為
x2
9
+
y2
5
=1,則該橢圓的離心率e=
 
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出橢圓方程的a,b,c,再由離心率公式,即可計(jì)算得到.
解答: 解:橢圓的標(biāo)準(zhǔn)方程為
x2
9
+
y2
5
=1,
則a=3,b=
5
,c=
a2-b2
=
9-5
=2,
則離心率為e=
c
a
=
2
3

故答案為:
2
3
點(diǎn)評(píng):本題考查橢圓的方程和性質(zhì),考查橢圓的離心率,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A′B′C′D′的棱長(zhǎng)為a.
(1)求A′B和B′C的夾角;
(2)求證:A′B⊥AC′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為大于1的常數(shù),函數(shù)f(x)=
logax  x>0
ax+1  x≤0
,若關(guān)于x的方程f2(x)-b•f(x)=0恰有三個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的通項(xiàng)公式為an=3n-2,等比數(shù)列{bn}中,b1=a1,b4=a3+1,記集合A={x|x=an,n∈N},B={x|x=b,n∈N},U=A∪B,把集合U中的元素按從小到大依次排列,構(gòu)成數(shù)列{cn},則數(shù)列{cn}的前50項(xiàng)和S50=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xex,記f0(x)=f′(x),f1(x)=f′(x0),…,fn(x)=f′n-1(x)且x2>x1,對(duì)于下列命題:
①函數(shù)f(x)存在平行于x軸的切線;
f(x1)-f(x2)
x1-x2
>0;
③f′2012(x)=xex+2014ex
④f(x1)+x2<f(x2)+x1
其中正確的命題序號(hào)是
 
(寫出所有滿足題目條件的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,AB=AC=3,M,N是斜邊BC上的兩個(gè)三等分點(diǎn),則
AM
AN
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx+2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,半徑為1的圓與圓C有公共點(diǎn),則k的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sin2α=
5
5
,sin(β-α)=
10
10
,且α∈[
π
4
,π],β∈[π,
2
],則α+β的值是( 。
A、
4
B、
4
C、
4
4
D、
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知區(qū)域Ω={(x,y)|0≤y≤
4-x2
},函數(shù)f(x)=
a
a2-1
(ax-a-x),其中a>0且a≠1,集合A={m<0|f(1-m)+f(1-m2)≤0},區(qū)域M={(x,y)∈Ω|(x-m)(x-y+2)≤0,m∈A}.若向區(qū)域內(nèi)隨即投一點(diǎn)Q,則點(diǎn)Q落在區(qū)域M內(nèi)的概率P(M)=( 。
A、
π+2
B、
π-2
C、
π-1
D、
3π+1

查看答案和解析>>

同步練習(xí)冊(cè)答案