【題目】已知函數(shù).

1)若上單調(diào)遞增,求實數(shù)的取值范圍;

2)若對任意,不等式恒成立,求實數(shù)的取值范圍.

【答案】(1);(2.

【解析】

1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,分離參數(shù),構(gòu)造新函數(shù),分析新的函數(shù)的單調(diào)性,求最值,即可得的取值范圍;

2)問題轉(zhuǎn)化為不等式恒成立,構(gòu)造函數(shù),根據(jù)函數(shù)的單調(diào)性的討論,分析求得最終結(jié)果.

1)由題意得

對任意恒成立.

,

,

上單調(diào)遞增,有,

所以上單調(diào)遞增,的最小值為,

;

2)依題意,對任意,有恒成立.

,則.

,得,

,故.

分類討論如下:

,則,

此處用到了經(jīng)典函數(shù)不等式.

上單調(diào)遞增,有.符合題意.

,,,

,

由零點存在性定理知存在

使得當(dāng)時,有,則內(nèi)單調(diào)遞減,

,則單調(diào)遞減,

,舍去.

綜上,實數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上一點到焦點的距離.

(1)求拋物線的方程;

(2)過點引圓的兩條切線,切線與拋物線的另一交點分別為,線段中點的橫坐標(biāo)記為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某超市2019年中的12個月的收入與支出數(shù)據(jù)的折線圖如圖所示,則下列說法中,錯誤的是( )

A.該超市在2019年的12個月中,7月份的收益最高;

B.該超市在2019年的12個月中,4月份的收益最低;

C.該超市在20197月至12月的總收益比21091月至6月的總收益增長了90萬元;

D.該超市在20191月至6月的總收益低于21097月至12月的總收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,,,的中點,E是棱上一動點.

(1)若E是棱的中點,證明:平面;

(2)求二面角的余弦值;

(3)是否存在點E,使得,若存在,求出E的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,左、右焦點分別為、,拋物線的焦點恰好是該橢圓的一個頂點.

1)求橢圓的方程;

2)已知直線與圓相切,且直線與橢圓相交于、兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某縣為了幫助農(nóng)戶脫貧致富,鼓勵農(nóng)戶利用荒地山坡種植果樹,某農(nóng)戶考察了三種不同的果樹苗、.經(jīng)過引種實驗發(fā)現(xiàn),引種樹苗的自然成活率為,引種樹苗的自然成活率均為

1)任取樹苗、、各一棵,估計自然成活的棵數(shù)為,求的分布列及其數(shù)學(xué)期望;

2)將(1)中的數(shù)學(xué)期望取得最大值時的值作為種樹苗自然成活的概率.該農(nóng)戶決定引種種樹苗,引種后沒有自然成活的樹苗有的樹苗可經(jīng)過人工栽培技術(shù)處理,處理后成活的概率為,其余的樹苗不能成活.

①求一棵種樹苗最終成活的概率;

②若每棵樹苗引種最終成活可獲利元,不成活的每棵虧損元,該農(nóng)戶為了獲利期望不低于萬元,問至少要引種種樹苗多少棵?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對應(yīng)關(guān)系如下表:

AQI指數(shù)值

0~50

51~100

101~150

151~200

201~300

>300

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

下圖是某市10月1日—20日AQI指數(shù)變化趨勢:

下列敘述錯誤的是

A. 這20天中AQI指數(shù)值的中位數(shù)略高于100

B. 這20天中的中度污染及以上的天數(shù)占

C. 該市10月的前半個月的空氣質(zhì)量越來越好

D. 總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,點,點、分別為橢圓的上頂點和左焦點,且.

1)求橢圓的方程;

2)若過定點的直線與橢圓交于兩點(,之間)設(shè)直線的斜率,在軸上是否存在點,使得以,為鄰邊的平行四邊形為菱形?如果存在,求出的取值范圍?如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,極坐標(biāo)系中,弧所在圓的圓心分別為,曲線是弧,曲線是弧,曲線是弧,曲線是弧.

1)分別寫出的極坐標(biāo)方程;

2)直線的參數(shù)方程為為參數(shù)),點的直角坐標(biāo)為,若直線與曲線有兩個不同交點,求實數(shù)的取值范圍,并求出的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案