【題目】已知拋物線上一點到焦點的距離.
(1)求拋物線的方程;
(2)過點引圓的兩條切線,切線與拋物線的另一交點分別為,線段中點的橫坐標記為,求的取值范圍.
【答案】(1)(2)見解析
【解析】
(1)由題意確定p的值即可確定拋物線方程;
(2)很明顯切線斜率存在,由圓心到直線的距離等于半徑可得是方程的兩根,聯(lián)立直線方程與拋物線方程可得點的橫坐標 .結(jié)合韋達定理將原問題轉(zhuǎn)化為求解函數(shù)的值域的問題即可.
(1)由拋物線定義,得,由題意得:
解得
所以,拋物線的方程為.
(2)由題意知,過引圓的切線斜率存在,設(shè)切線的方程為,則圓心到切線的距離,整理得,.
設(shè)切線的方程為,同理可得.
所以,是方程的兩根,.
設(shè),由得,,
由韋達定理知,,所以,同理可得.
設(shè)點的橫坐標為,則
.
設(shè),則,
所以,,對稱軸,所以
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十七世紀,法國數(shù)學(xué)家費馬提出猜想;“當(dāng)整數(shù)時,關(guān)于、、的方程沒有正整數(shù)解”,經(jīng)歷三百多年,1995年英國數(shù)學(xué)家安德魯懷爾斯給出了證明,使它終成費馬大定理,則下面命題正確的是( )
①對任意正整數(shù),關(guān)于、、的方程都沒有正整數(shù)解;
②當(dāng)整數(shù)時,關(guān)于、、的方程至少存在一組正整數(shù)解;
③當(dāng)正整數(shù)時,關(guān)于、、的方程至少存在一組正整數(shù)解;
④若關(guān)于、、的方程至少存在一組正整數(shù)解,則正整數(shù);
A.①②/span>B.①③C.②④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從裝有大小相同的2個紅球和6個白球的袋子中,每摸出2個球為一次試驗,直到摸出的球中有紅球(不放回),則試驗結(jié)束.
(1)求第一次試驗恰摸到一個紅球和一個白球概率;
(2)記試驗次數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了保障全國第四次經(jīng)濟普查順利進行,國家統(tǒng)計局從東部選擇江蘇, 從中部選擇河北. 湖北,從西部選擇寧夏, 從直轄市中選擇重慶作為國家綜合試點地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū).在普查過程中首先要進行宣傳培訓(xùn),然后確定對象,最后入戶登記. 由于種種情況可能會導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點經(jīng)驗. 在某普查小區(qū),共有 50 家企事業(yè)單位,150 家個體經(jīng)營戶,普查情況如下表所示:
普查對象類別 | 順利 | 不順利 | 合計 |
企事業(yè)單位 | 40 | 10 | 50 |
個體經(jīng)營戶 | 100 | 50 | 150 |
合計 | 140 | 60 | 200 |
(1)寫出選擇 5 個國家綜合試點地區(qū)采用的抽樣方法;
(2)根據(jù)列聯(lián)表判斷是否有的把握認為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”;
(3)以頻率作為概率, 某普查小組從該小區(qū)隨機選擇 1 家企事業(yè)單位,3 家個體經(jīng)營戶作為普查對象,入戶登記順利的對象數(shù)記為, 寫出的分布列,并求的期望值.
附:
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2014年聯(lián)想集團以28億收購摩托羅拉移動公司,并計劃投資30億元來發(fā)展改品牌,2014年摩托羅拉手機的銷售量為100萬部,據(jù)專家預(yù)測,從2015年起,摩托羅拉手機的銷售量每年比上上一年增加100萬部,每年的銷售利潤比上一年減少10%,已知2014年銷售利潤平均每部為300元.
(1)若2014年看作第一年,第n年的銷售利潤為多少?
(2)到2020年年底,中國聯(lián)想集團能否通過摩托羅拉手機實現(xiàn)盈利?(即銷售利潤超過總投資)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】方程的曲線即為函數(shù)的圖象,對于函數(shù),有如下結(jié)論:①在上單調(diào)遞減;②函數(shù)存在零點;③函數(shù)的值域是R;④若函數(shù)和的圖象關(guān)于原點對稱,則函數(shù)的圖象就是確定的曲線
其中所有正確的命題序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若曲線在處的切線與直線平行,求實數(shù)的值;
(Ⅱ)若函數(shù)在定義域上為增函數(shù),求實數(shù)的取值范圍;
(Ⅲ)若有兩個極值點,且,,若不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校閱覽室的一個書架上有6本不同的課外書,有5個學(xué)生想閱讀這6本書,在同一時間內(nèi)他們到這個書架上取書.
(1)求每個學(xué)生只取1本書的不同取法種數(shù);
(2)求每個學(xué)生最少取1本書,最多取2本書的不同取法種數(shù);
(3)求恰有1個學(xué)生沒取到書的不同取法種數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,以原點為極點,軸的正半軸為極軸,以相同的長度單位建立極坐標系,已知直線的極坐標方程為,曲線的極坐標方程為,
(l)設(shè)為參數(shù),若,求直線的參數(shù)方程;
(2)已知直線與曲線交于,設(shè),且,求實數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com