11.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y-4≥0}\\{2x-y-8≤0}\end{array}\right.$,則;z=y-x最小值是-4,z=$\frac{x}{y+4}$的最大值是1.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:由z=y-x得y=x+z,
作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分ABC):
平移直線y=x+z由圖象可知當(dāng)直線y=x+z經(jīng)過點B時,直線y=x+z的截距最小,此時z也最小,
由$\left\{\begin{array}{l}{x+2y-4=0}\\{2x-y-8=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$,即B(4,0).
代入目標(biāo)函數(shù)z=y-x,
得z=0-4=-4.
z=$\frac{x}{y+4}$=$\frac{1}{\frac{y+4}{x}}$,
設(shè)k=$\frac{y+4}{x}$,則k的幾何意義是區(qū)域內(nèi)的點到D(0,-4)的斜率,
由圖象知BD的斜率最小,此時k=$\frac{0+4}{4}=1$,
即k≥1,則z=$\frac{1}{k}$∈(0,1],
即z=$\frac{x}{y+4}$的最大值是1,
故答案為:-4;1.

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用直線平移以及轉(zhuǎn)化為直線斜率,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.綜合性較強(qiáng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若數(shù)列{an}滿足a1=1,an+1-an=2n-1
(Ⅰ)求{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足b1=3,bn+1-bn=2n+3,且cn=$\frac{{a}_{n}•_{n}}{n}$,求數(shù)列{cn}的通項公及前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,圓C內(nèi)切于扇形AOB,∠AOB=$\frac{π}{3}$,若向扇形AOB內(nèi)隨機(jī)投擲300個點,則落入圓內(nèi)的點的個數(shù)估計值為(  )
A.450B.400C.200D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y-1≥0}\\{x-1≤0}\\{4x-y+1≥0}\end{array}\right.$則目標(biāo)函數(shù)z=$\frac{y+1}{x+3}$的最大值為(  )
A.$\frac{1}{4}$B.$\frac{2}{3}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.“我是歌手”是芒果衛(wèi)視推出的節(jié)目,其中歌手由大眾評審打分,已知大眾評審有五個年齡層,每組100人,共500人.年齡層分布知如下:
10組:12-19歲
20組:20-29歲
30組:30-39歲
40組:40-49歲
50組:50歲以上
在某歌手演唱完一首民族歌曲后,得票情況如圖所示:
已知該歌手共獲得了215張選票.
(1)完成2×2列聯(lián)表:
投票
年齡
合計
10組   
50組   
合計   
(2)判斷是否有99%的把握認(rèn)為投票與否和年齡有關(guān),說明你的理由.(下面的臨界值表供參考)
P(x2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(參考公式x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$,n=n1++n2++n+1+n+2
(3)以上圖中投票情況,從20組和40組中隨機(jī)各抽取1人,求其中投票的人數(shù)ξ的分布列及其期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)在定義域[-3,3]上是偶函數(shù),在[0,3]上單調(diào)遞增,并且f(-m2-1)>f(-m2+2m-2),則m的取值范圍是( 。
A.$(1-\sqrt{2},\sqrt{2}]$B.$[1-\sqrt{2},\sqrt{2}]$C.$[\frac{1}{2},\sqrt{2}]$D.$(\frac{1}{2},\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象關(guān)于坐標(biāo)原點中心對稱,且在y軸右側(cè)的第一個極值點為x=$\frac{π}{3}$,則函數(shù)f(x)的最小正周期為$\frac{4π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤2}\\{y≥x-1}\\{y≥-\frac{1}{2}x+\frac{5}{2}}\end{array}\right.$且目標(biāo)函數(shù)z=-kx+y,當(dāng)且僅當(dāng)x=3,y=2時取得最大值,則實數(shù)的k的取值范圍是(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若直線l1:x+2y-4=0與l2:mx+(2-m)y-3=0平行,則實數(shù)m的值為$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊答案