分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合進(jìn)行求解即可.
解答 解:由z=y-x得y=x+z,
作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分ABC):
平移直線y=x+z由圖象可知當(dāng)直線y=x+z經(jīng)過點B時,直線y=x+z的截距最小,此時z也最小,
由$\left\{\begin{array}{l}{x+2y-4=0}\\{2x-y-8=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$,即B(4,0).
代入目標(biāo)函數(shù)z=y-x,
得z=0-4=-4.
z=$\frac{x}{y+4}$=$\frac{1}{\frac{y+4}{x}}$,
設(shè)k=$\frac{y+4}{x}$,則k的幾何意義是區(qū)域內(nèi)的點到D(0,-4)的斜率,
由圖象知BD的斜率最小,此時k=$\frac{0+4}{4}=1$,
即k≥1,則z=$\frac{1}{k}$∈(0,1],
即z=$\frac{x}{y+4}$的最大值是1,
故答案為:-4;1.
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用直線平移以及轉(zhuǎn)化為直線斜率,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.綜合性較強(qiáng).
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 450 | B. | 400 | C. | 200 | D. | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
投票 年齡 | 是 | 否 | 合計 |
10組 | |||
50組 | |||
合計 |
P(x2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(1-\sqrt{2},\sqrt{2}]$ | B. | $[1-\sqrt{2},\sqrt{2}]$ | C. | $[\frac{1}{2},\sqrt{2}]$ | D. | $(\frac{1}{2},\sqrt{2}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com